Problem Set 5 Solutions

Problem 1. Specify a CFG for the language

\[L = \{ x \in \{\text{bass, chicken, carp, turkey}\}^* : x \text{ contains as much fish as fowl} \} \]

(meaning that the number of occurrences in \(x \) of substrings bass and carp should be at least the number occurrences in \(x \) of substrings chicken and turkey. Make your CFG as simple to understand as you can.

A CFG for this language is given by

\[S \rightarrow F \rightarrow \text{Fish} \rightarrow \text{bass} | \text{carp} \]
\[S \rightarrow F \rightarrow \text{Fish} \rightarrow \text{bass} | \text{carp} \]
\[X \rightarrow \text{chicken} \rightarrow \text{turkey} \]

Problem 2. Prove that every regular language is context free. Do this by showing how to convert a DFA \(M = (Q, \Sigma, \delta, q_0, F) \) into a CFG \(G = (V, \Sigma, R, S) \) of roughly the same size.

Given the DFA \(M = (Q, \Sigma, \delta, q_0, F) \) we construct the CFG \(G = (V, \Sigma, R, S) \) by asserting that

- \(V = Q \)
- For \(p, q \in Q \) and \(a \in \Sigma \), put
 \[p \rightarrow aq \in R \text{ id } \delta(p, a) = q; \text{ and put } p \rightarrow \epsilon \in R \text{ if } p \in F. \]
- \(S = q_0 \)

To show \(L(M) = L(G) \):

- First we show that if \(x \in L(M) \) then \(x \in L(G) \), because we can derive \(x \) in \(G \) as follows:
 - If \(x = \epsilon \in L(M) \) then derive \(x \) by \(q_0 \Rightarrow \epsilon \).
 - If \(x = a_1 \cdots a_n \in L(G) \), with \(a_i \in \Sigma \), then we derive \(x \) by \(q_0 \Rightarrow a_1 \delta^*(q_0, a_1) \Rightarrow a_1a_2\delta^*(q_0, a_1a_2) \Rightarrow a_1a_2a_3\delta^*(q_0, a_1a_2a_3) \Rightarrow \cdots \Rightarrow a_1a_2a_3 \cdots a_n \Rightarrow a_1a_2a_3 \cdots a_n \epsilon = x. \)
- Next we show that if \(x \in L(G) \) then \(x \in L(M) \). For \(x \in L(G) \) means there’s a derivation of \(x \) from \(q_0 \) and, because of the limited rules in our CFG, the derivation can only look like \(q_0 \Rightarrow a_1q_1 \Rightarrow a_1a_2q_2 \Rightarrow a_1a_2a_3q_3 \Rightarrow \cdots \Rightarrow a_1a_2a_3 \cdots a_nq_n \Rightarrow a_1a_2a_3 \cdots a_n \epsilon = x \) where each \(a_i \in \Sigma \) and \(q_i \in Q \). But then \(x \in L(M) \), for \(q_0q_1 \cdots q_n \) is a path in the DFA from the start state to the final state labeled by \(x \).

Problem 3. Prove that every regular language is context free. Do this by showing how to convert a regular expression \(\alpha \) into a CFG \(G = (V, \Sigma, R, S) \) of roughly the same size.

By induction. The regular expressions \(a \ (a \in \Sigma), \varepsilon, \) and \(\emptyset \) have CFGs \(S \rightarrow a, S \rightarrow \varepsilon, \) and \(S \rightarrow \varepsilon \), respectively. Now suppose we have built CFGs \(G_\alpha = (V_\alpha, \Sigma, S_\alpha, R_\alpha) \) and \(G_\beta = (V_\beta, \Sigma, S_\beta, R_\beta) \) for regular expressions \(\alpha \) and \(\beta \). Rename symbols, if necessary, so that \(V_\alpha \) and \(V_\beta \) are disjoint. Then we can build a CFG for \((\alpha \circ \beta) \) by \((V_\alpha \cup V_\beta \cup \{S\}, \Sigma, S, R_\alpha \cup R_\beta \cup \{(S, S_\alpha S_\beta)\}) \). Similarly, we can build a CFG for \((\alpha \cup \beta) \) by \((V_\alpha \cup V_\beta \cup \{S\}, \Sigma, S, R_\alpha \cup R_\beta \cup \{(S, S_\alpha), (S, S_\beta)\}) \). And we can build a CFG for \((\alpha)^* \) by \((V_\alpha \cup \{S\}, \Sigma, S, R_\alpha \cup \{(S, S_\alpha S_\alpha), (S, \varepsilon)\}) \).