Problem Set 5 Solutions

Problem 1. Specify a CFG for the language

$$
L=\left\{x \in\{\text { bass, chicken, carp, turkey }\}^{*}: x \text { contains as much fish as fowl }\right\}
$$

(meaning that the number of occurrences in x of substrings bass and carp should be at least the number occurrences in x of substrings chicken and turkey. Make your CFG as simple to understand as you can.

A CFG for this language is given by

```
\(S \rightarrow S\) Fish \(S\) Fowl \(S \mid S\) Fowl \(S\) Fish \(S \mid X\)
\(X \rightarrow\) Fish \(X \mid \varepsilon\)
Fish \(\rightarrow\) bass | carp
Fowl \(\rightarrow\) chicken | turkey
```

Problem 2. Prove that every regular language is context free. Do this by showing how to convert a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ into a $C F G G=(V, \Sigma, R, S)$ of roughly the same size.

Given the DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we construct the CFG $G=(V, \Sigma, R, S)$ by asserting that

- $V=Q$
- For $p, q \in Q$ and $a \in \Sigma$, put
$p \rightarrow a q \in R$ iff $\delta(p, a)=q$; and put
$p \rightarrow \varepsilon \in R$ iff $p \in F$.
- $S=q_{0}$

To show $L(M)=L(G)$:

- First we show that if $x \in L(M)$ then $x \in L(G)$, because we can derive x in G as follows:

If $x=\varepsilon \in L(M)$ then we derive x by $q_{0} \Rightarrow \varepsilon$.
If $x=a_{1} \cdots a_{n} \in L(G)$, with $a_{i} \in \Sigma$, then we derive x by $q_{0} \Rightarrow a_{1} \delta^{*}\left(q_{0}, a_{1}\right) \Rightarrow a_{1} a_{2} \delta^{*}\left(q_{0}, a_{1} a_{2}\right) \Rightarrow$ $a_{1} a_{2} a_{3} \delta^{*}\left(q_{0}, a_{1} a_{2} a_{3}\right) \Rightarrow \cdots \Rightarrow a_{1} a_{2} a_{3} \cdots a_{n} \delta^{*}\left(q_{0}, a_{1} a_{2} a_{3} \cdots a_{n}\right) \Rightarrow a_{1} a_{2} a_{3} \cdots a_{n} \varepsilon=x$.

- Next we show that if $x \in L(G)$ then $x \in L(M)$. For $x \in L(G)$ means there's a derivation of x from q_{0} and, because of the limited rules in our CFG, the derivation can only look like $q_{0} \Rightarrow a_{1} q_{1} \Rightarrow$ $a_{1} a_{2} q_{2} \Rightarrow a_{1} a_{2} a_{3} q_{3} \Rightarrow \cdots \Rightarrow a_{1} a_{2} a_{3} \cdots a_{n} q_{n} \Rightarrow a_{1} a_{2} a_{3} \cdots a_{n} \varepsilon=x$ where each $a_{i} \in \Sigma$ and $q_{i} \in Q$. But then $x \in L(M)$, for $q_{0} q_{1} \cdots q_{n}$ is a path in the DFA from the start state to the final state labeled by x.

Problem 3. Prove that every regular language is context free. Do this by showing how to convert a regular expression α into a $C F G G=(V, \Sigma, R, S)$ of roughly the same size.

By induction. The regular expressions $a(a \in \Sigma), \varepsilon$, and \emptyset have CFGs $S \rightarrow a, S \rightarrow S$, and $S \rightarrow \varepsilon$, respectively. Now suppose we have built CFGs $G_{\alpha}=\left(V_{\alpha}, \Sigma, S_{\alpha}, R_{\alpha}\right)$ and $G_{\beta}=\left(V_{\beta}, \Sigma, S_{\beta}, R_{\beta}\right)$ for regular expressions α and β. Rename symbols, if necessary, so that V_{α} and V_{β} are disjoint. Then we can build a CFG for $(\alpha \circ \beta)$ by $\left(V_{\alpha} \cup V_{\beta} \cup\{S\}, \Sigma, S, R_{\alpha} \cup R_{\beta} \cup\left\{\left(S, S_{\alpha} S_{\beta}\right\}\right)\right)$. Similarly, we can build a CFG for $(\alpha \cup \beta)$ by $\left(V_{\alpha} \cup V_{\beta} \cup\{S\}, \Sigma, S, R_{\alpha} \cup R_{\beta} \cup\left\{\left(S, S_{\alpha}\right),\left(S, S_{\beta}\right)\right\}\right)$. And we can build a CFG for (α^{*}) by $\left(V_{\alpha} \cup\{S\}, \Sigma, S, R_{\alpha} \cup\left\{\left(S, S S_{\alpha}\right),(S, \varepsilon)\right\}\right)$.

