Problem Set 5 Solutions

Problem 1. Specify a CFG for the language

 $L = \{x \in \{\text{bass, chicken, carp, turkey}\}^* : x \text{ contains as much fish as fowl}\}$

(meaning that the number of occurrences in x of substrings bass and carp should be at least the number occurrences in x of substrings chicken and turkey. Make your CFG as simple to understand as you can.

A CFG for this language is given by

Problem 2. Prove that every regular language is context free. Do this by showing how to convert a DFA $M = (Q, \Sigma, \delta, q_0, F)$ into a CFG $G = (V, \Sigma, R, S)$ of roughly the same size.

Given the DFA $M = (Q, \Sigma, \delta, q_0, F)$ we construct the CFG $G = (V, \Sigma, R, S)$ by asserting that

- V = Q
- For $p, q \in Q$ and $a \in \Sigma$, put $p \to aq \in R$ iff $\delta(p, a) = q$; and put $p \to \varepsilon \in R$ iff $p \in F$.
- $S = q_0$

To show L(M) = L(G):

- First we show that if $x \in L(M)$ then $x \in L(G)$, because we can derive x in G as follows: If $x = \varepsilon \in L(M)$ then we derive x by $q_0 \Rightarrow \varepsilon$. If $x = a_1 \cdots a_n \in L(G)$, with $a_i \in \Sigma$, then we derive x by $q_0 \Rightarrow a_1 \delta^*(q_0, a_1) \Rightarrow a_1 a_2 \delta^*(q_0, a_1 a_2) \Rightarrow a_1 a_2 a_3 \delta^*(q_0, a_1 a_2 a_3) \Rightarrow \cdots \Rightarrow a_1 a_2 a_3 \cdots a_n \delta^*(q_0, a_1 a_2 a_3 \cdots a_n) \Rightarrow a_1 a_2 a_3 \cdots a_n \varepsilon = x.$
- Next we show that if $x \in L(G)$ then $x \in L(M)$. For $x \in L(G)$ means there's a derivation of x from q_0 and, because of the limited rules in our CFG, the derivation can only look like $q_0 \Rightarrow a_1q_1 \Rightarrow a_1a_2q_2 \Rightarrow a_1a_2a_3q_3 \Rightarrow \cdots \Rightarrow a_1a_2a_3\cdots a_nq_n \Rightarrow a_1a_2a_3\cdots a_n\varepsilon = x$ where each $a_i \in \Sigma$ and $q_i \in Q$. But then $x \in L(M)$, for $q_0q_1\cdots q_n$ is a path in the DFA from the start state to the final state labeled by x.
- **Problem 3.** Prove that every regular language is context free. Do this by showing how to convert a regular expression α into a CFG $G = (V, \Sigma, R, S)$ of roughly the same size.

By induction. The regular expressions $a \ (a \in \Sigma)$, ε , and \emptyset have CFGs $S \to a$, $S \to S$, and $S \to \varepsilon$, respectively. Now suppose we have built CFGs $G_{\alpha} = (V_{\alpha}, \Sigma, S_{\alpha}, R_{\alpha})$ and $G_{\beta} = (V_{\beta}, \Sigma, S_{\beta}, R_{\beta})$ for regular expressions α and β . Rename symbols, if necessary, so that V_{α} and V_{β} are disjoint. Then we can build a CFG for $(\alpha \circ \beta)$ by $(V_{\alpha} \cup V_{\beta} \cup \{S\}, \Sigma, S, R_{\alpha} \cup R_{\beta} \cup \{(S, S_{\alpha}S_{\beta}\}))$. Similarly, we can build a CFG for $(\alpha \cup \beta)$ by $(V_{\alpha} \cup V_{\beta} \cup \{S\}, \Sigma, S, R_{\alpha} \cup R_{\beta} \cup \{(S, S_{\alpha}), (S, S_{\beta})\})$. And we can build a CFG for (α^*) by $(V_{\alpha} \cup \{S\}, \Sigma, S, R_{\alpha} \cup \{(S, SS_{\alpha}), (S, \varepsilon)\})$.