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UC Davis — Phillip Rogaway May 8, 2015

Problem Set 6 Solutions

Problem 1. Let L = {w € {a,b,c}* : w has an equal number of a’s, b’s, and c’s}. Describe a PDA for
L in English, and then formally specify it.

A solution and pretty picture can be found at http://tinyurl.com/ecs120ps6b

Problem 2. Let h: X. — I'* be an arbitrary function. Ezxtend it to strings and then languages by way of
h(e) = ¢, h(arag - - an) = h(ar)h(az) - - - h(ay) and then h(L) = {h(z): x € L}. Hereas,...,a, € X
and L C ¥*. The function h, and its extension to strings and languages, is called a homomorphism.
Are the CFLs closed under homomorphism? Prove your answer.

Yes, CFLs are closed under homomorphism. Let L by a CFL and let G = (V,%, R, S) be a grammar
for it. To make a grammar for h(L), just replace the right-hand side of every rule A — « by the same
right-hand side but with each a € ¥ appearing in « replaced by h(«). For example, if A— BCbcA€ R
then replace this rule by A — BC h(b) h(c) A. Tt is easy to see that the new grammar, G’, satisfies
L(G") = h(L).

Problem 3.

a. Prove that L, = {a’¥/c* : j = max{i, k}} is not context free.

Suppose for contradiction that L, were context free. Let p be the “p” of the pumping lemma for context
free languages. Consider the string w = aPbPcP. Suppose w = uvayz, where |vzy| < p and |vy| > 1. If vy
contains only a’s or vy contains only ¢’s, then pump up: the string uv?zy?z ¢ L,. Suppose vy contains
only b’s. Then we can pump either way to get a string not in L,. Suppose v contains two different letters
or y contains two different letters. Then uv?xy?z is not even of the form a*b*c*, so certainly it is not in
L,. Finally, suppose (v € a™ and) y € b, or v € b" (and y € ¢*). Then we can pump down and there
will be too few b’s. By |vwy| < p, these are all the possible cases. So in all cases there is some ¢ for which
wv'zy'z € L, a contradiction.

b. Prove that Ly = {b;#b;11 : b; is i in binary, i > 1} is not context free.

Suppose for contradiction that L; were context free. Let p be the “p” of the pumping lemma for context
free languages. Consider the string w = 1P0P#1P0P~!1 € L;. Suppose w = uvzyz, where |vzy| < p and
|vy| > 1. If vzy does not contain a #, then pumping either way will cause a contradiction (increasing or
decreasing one of the numbers without touching the other). If the # is contained in v or y, then pumping
either way leads to a string not even in (a Ub)*#(a U b)*, i.e., a string definitely outside of L;. Because
of the |vzy| < p condition, the only remaining possibility is for v = 0° and y = 17, i,5 > 1, to fall on
opposite sides of the “#.” But pumping up in this case means multiplying the left hand number by some
power of two, while it never means multiply the right hand number by some power of two. Thus the
pumped-up strings will not remain with the right number one more than the left.

Problem 4. Are the following languages context free? Prove your answers either way.

a. L= {ww?:we {a,b}*}

Context free. A PDA for L would push a marker onto the bottom of the stack, then push the characters
of the input string onto the stack. It would non-deterministically guess the middle of the input string and
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then, having made that guess, it would start popping symbols off the stack, comparing them with the
remaining characters. If all of these characters match, exposing the bottom-of-stack marker, the machine
accepts.

b. L = {wwfw: w € {a,b}*}

No, the language is not context free. Suppose for contradiction that L were context free. Let p be the
“p” of the pumping lemma for context free languages. Consider the string s = a?b*?a??b? € L. Suppose
s = vwwyz, where |wry| < p and |wy| > 1. Note that any string t € LNatbTatb™ has its partitioning
into t = rr®r uniquely determined by the length of the longest prefix of ¢ which is in a* and of the
longest suffix of ¢ which is in b*. Thus if wxy falls entirely outside of the longest prefix of initial a’s and
wazy falls entirely outside the longest suffix of final b’s, then vzz ¢ L. So wzy must begin in the initial
block of a’s or wxy must ends within the final block of b’s. In the first case, wxy ends before the second
block of b’s ends; in the second case, wxy begins after the second block of a’s begins. For the former,
note that any string t € L Natbtatbht has its partitioning into ¢ = rrr uniquely determined by the
longest suffix of ¢ in a*b™, and so vxz ¢ L. In the latter case, note that any string t € L Natbtatb™
has its partitioning into ¢t = rrfr uniquely determined by the longest prefix of s in a™b*, so vaz ¢ L.

Problem 5. Answer true or false, proving each answer.

(a) Every regular language is generated by an unambiguous CFG.

True. The grammar obtained by the procedure from PS4 that converts a DFA M to a CFG is always
unambiguous. The unique leftmost derivation of x € L(M) is read off of the DFA.

(b) Every regular language is generated by an ambiguous CFG.

False—but almost true. The empty set is not generated by an ambiguous CFG. Every other language is.
Given G = (V, 3, R, S), form a new grammar by adding the rule S — S € R. The grammar will now be
ambiguous—assuming L(G) # ()

(c) The CFLs are closed under intersection.

False—described in class.

(d) Every subset of a regular language is context free.

False—every non-context-free language L C ¥* is a subset of the regular language >*.
(e) If L is context free then L N a*b*a* is context free.

True—the intersection of a context-free language and a regular language is regular. This was mentioned
in class and described in the book.

Problem 6 A queue is similar to a stack, except that pushing and popping happen at opposite ends:
symbols are pushed onto the top of the queue and popped, and read, from the bottom of the queue.
A queue automaton (QA) is like a PDA but has a queue instead of a stack. Describe a language
that is recognized by a QA but not by any PDA.

The language L = {w#w : w € a,b"} is easily seen not to be context-free, by the pumping lemma, and
hence not recognized by any PDA. But L is recognized by a simple QA M: as M reads its input =,
it pushes each symbol of = onto the top of the queue, until it encounters the #. It pushes the # onto
the queue, too. As M reads the remainder of z, it pops off the symbols from the bottom of the queue,
checking that they match what is on the queue. If any mismatch is found, the machine rejects. Machine
M accepts if the stack contains # after all of the input has been read.

It turns out that QAs are equivalent in power to Turing Machines—a stack beats a queue!



