ECS 120: Theory of Computation ps9-soln
UC Davis — Phillip Rogaway May 29, 2015

Problem Set 9 Solutions

Problem 1. As you did last week, classify each of the following languages as recursive, r.e. but not
decidable, co-r.e. but not decidable, or neither r.e. nor co-r.e. Giving reductions where appropriate,
prove your results.

1.1 A={(M,k): M is a TM that accepts at least one string of length k}.
r.e. An NTM can guess the string w of length k and verify that M accepts it.

However, A is not recursive. To see this, we show that Aty <, A. This means that given a string (M, w)
we must construct (M, k) by effective procedure such that M accepts w if and only if M’ accepts some
string of length k. To do this, let k be arbitrary (eg, k = 1) and let M’ be the following machine: on
input x, M’ ignores x, runs M on w, accepts if M does, and rejects if M rejects. Whenever M accepts w
we will have that L(M') = ¥*, so M’ will accept a string of length k; while if M doesn’t accept w then
L(M'") =0 so M’ will not accept any string of length k.

1.2 B ={(M,k): M is a TM that runs forever on at least one string of length k}.

co-r.e. The complement is the set of (M, k) encodings such that M halts on every string of length k.
You can just try M on each string of length k£ and check that it halts on each of these finitely-many
strings.

To show that B is not recursive, we show that Ay <, B. That is, given (M, w), we must construct (by
effective procedure) an (M’ k) such that M doesn’t accept w if and only if M’ diverges on some string
of length k. To carry out the mapping, let kK = 0 and have machine M’ on input x behave as follows: M’
clears off x, writes w on its input tape, and then behaves like M, accepting if M accepts and looping if
M rejects.

So if M does not accept w, then M’ diverges on some string of length 0 (namely, the empty string), while
if M accepts w then M’ accepts all strings of length 0 (namely, the empty string).

1.3 C ={(M,k): M is a TM that accepts a string of length k and diverges on a string of length k}.
Assume that the underlying alphabet has at least two characters.

neither. Let 0 and 1 name two characters in the underlying alphabet. First we show that Apy <, C.
This shows that C is not co-r.e. Given (M, w) we must construct by effective procedure (M’, k) such that
M accepts w if and only if M’ accepts some string of length %k and it diverges on some string of length k
To do this, set ¥ = 1 and have machine M’ on input x if x # 0 then have M’ diverge, while if © = 0 then
let M’ simulate M on input w, accepting if M accepts w and looping if M rejects w.

Now if M accepts w then M’ accepts some string of length 1 (the string 0) and diverges on some string
of length 1 (the string 1). If, instead, machine M does not accept w, then M’ diverges on all strings of
length k£ = 1. Thus Aty <m C.

Next we show that Aty <., C. This shows that C is not r.e. Given (M,w), we must construct by
effective procedure (M’, k) such that M fails to accept w if and only if M’ accepts some string of length k
and diverges on some string of length k. To do this, set K = 1 and have machine M’ on input x behave
as follows: if x # 0 then M’ accepts; otherwise, when x = 0, have M’ simulate M on input w, accepting
if M accepts w and looping if M rejects w. Now if M fails to accept w then M’ diverges on some string
of length 1 (the string 0) and M accepts some string of length 1 (the string 1). On the other hand, if M
accepts w then M’ accepts all strings, and so all strings of length 1. Thus Ay <y C.

1.4 D ={(M): M is a TM that accepts some palindrome}.

2 ECS 120 ps9-soln: Problem Set 9 Solutions

r.e. An NTM can guess a palindrome w in L(M) and then verify that w is indeed a palindrome and
w € L(M). The language is undecidable by Rice’s theorem, which gives us its classification. But to
prove “from scratch” that D not co-r.e., we show that Ary <,, D. Given (M, w) we must produce
(in a Turing-computable way) a machine description (M’) such that M accepts w iff M’ accepts some
palindrome. Well, define M’ (on input z) as follows: Runs M’ on w. If M accepts w, then accept (the
input x to M'). If M rejects w, then reject (the input x to M’). Then if M’ accepts w we will have
that L(M') = ¥*, which certainly contains a palindrome. If M’ doesn’t accept w then L(M’) = 0, so M’
accepts no palindrome. We are done.

1.5 E={(G1,Gs): G; and Gy are CFGs and L(G1) ® L(G3) = 0}.
You may assume that L = {(G) : G is a CFG and L(G) = ¥*} is undecidable.

co-r.e.. Two sets have empty symmetric difference iff they’re the same; E is the set of all (G1,G2) where
CFGs G71 and G4 denote the same language. An NTM can guess a string x in the symmetric difference
of L(G1) and L(G3) and then verify this guess. To show that E is not decidable, we show that L <, E.
Given a CFG (@), we map it to the pair (G, G2) where G5 is a fixed CFG the language of which is ¥*.
Then L(G) & L(G2) = 0 iff L(G) = X*. The reduction is trivially computable.

1.6 F={(M): MisaTM and L(M) is recursive}.

neither. As the empty set () is recursive, Rice’s theorem tells us that F' is not r.e.. We must show that,
in addition, it is not co-r.e.. To that end, let’s reduce Aty <;, F. In particular, we must map an (M, w)
by a Turing-computable f to an M’ such that M accepts w iff L(M’) is recursive. So let’s have M’
on input z behave as follows: first, run M on w for |z| steps. If M has accepted by this time, accept.
Otherwise, parse to a value (M"”,w”) and run M” on w"”, accepting if M" accepts and rejecting if M"
rejects. Now if M accepts w then L(M’) is co-finite and therefore recursive; while if M doesn’t accept
w then L(M’) = Ary, which is not recursive. The mapping f that takes (M, w) to (M’) is certainly
Turing-computable, so we are done.

Problem 2 Prove or disprove each of the following claims.

2.1 A <, A. True. The identify function provides the needed mapping f.

2.2 If A<y, Band B <, C, then A <, C. True. Given f many-one reducing A to B and g many-one
reducing B to C, their composition, g o f, many-one reduces A to B.

2.3 If A <;, Bthen A <, B. True. If f many-one reduces A to B then z € A iff f(z) € B, which
means that f itself many-one reduces A to B, as ¢ ¢ A iff f(z) &€ B.

2.4 1If A is recursive, then A <,;, a*b*. True. Because A is decidable we can construct a Turing-
computable function f where f(x) = e if z € A and f(x) = ba if x ¢ A. This function comprises a
many-one reduction from A to a*b*.

2.5 If A <, B then B <, A. False. For example, a*b* <, Ay but Ay Lo, a*b*.

2.6 If A <, Band B <, A then A = B. False. Eg, {0} <,, {1} and {1} <, {0}, but that doesn’t
mean {0} = {1}.

Problem 3. Let us say that a nonempty set B is countable if you can list (possibly with repetitions) its
elements B = {ay,az,as,...}; more formally, there is a surjective function f from N to B. We'll
say that the empty set is also countable. A set is uncountable if it is not countable.

IRecall that a function f : A — B is surjective (or onto) if for every b € B there is an a € A such that f(a) = b.

ECS 120 ps9-soln: Problem Set 9 Solutions 3

8.1 Prove that any subset A of a countable set B is countable.

If A = () this is trivially true, so suppose A # () and fix a € A. Let B be countable and let f : N — B
be a surjective function that demonstrates this. Define g : N — A by g(x) = f(z) if v € A and g(z) = a
otherwise. Then g is onto A, since for every = € A there is an ¢ € N such that f(i) = z and, for this 4,
we also have that ¢(i) = x.

3.2 Fiz an alphabet 2. Prove that there are countably many finite languages over 3.

Every finite subset of ¥* can be specified by a string over ¥* U {, } (just list its elements). There are
countably many strings over any alphabet: you can list the strings in lexicographic order.

3.3 Fiz an alphabet X.. Prove that there are uncountably many infinite languages over ..

Assume for contradiction that there is an enumeration Li, Lo, ... of the infinite languages over %. Let
w1, Wa, . .. be the lexicographic enumeration of all odd-length strings over ¥. Construct the language D
as follows: if |z| is even, say that x € D; if |z| is odd, define 7 so that w; = 2 and say that © € D iff
x & L;. Then, for all i, we know that D # L; because w; € D iff w; € L;. Also, D is infinite because it
contains all even-length strings.

