Problem Set 9 Solutions

Problem 1. As you did last week, classify each of the following languages as recursive, r.e. but not decidable, co-r.e. but not decidable, or neither r.e. nor co-r.e. Giving reductions where appropriate, prove your results.

1.1 \(A = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \} \).

r.e. An NTM can guess the string \(w \) of length \(k \) and verify that \(M \) accepts it.

However, \(A \) is not recursive. To see this, we show that \(A_{\text{TM}} \leq_m A \). This means that given a string \(\langle M, w \rangle \) we must construct \(\langle M', k \rangle \) by effective procedure such that \(M \) accepts \(w \) if and only if \(M' \) accepts some string of length \(k \). To do this, let \(k \) be arbitrary (eg, \(k = 1 \)) and let \(M' \) be the following machine: on input \(x \), \(M' \) ignores \(x \), runs \(M \) on \(w \), accepts if \(M \) does, and rejects if \(M \) rejects. Whenever \(M \) accepts \(w \) we will have that \(L(M') = \Sigma^* \), so \(M' \) will accept a string of length \(k \); while if \(M \) doesn't accept \(w \) then \(L(M') = \emptyset \) so \(M' \) will not accept any string of length \(k \).

1.2 \(B = \{ \langle M, k \rangle : M \text{ is a TM that runs forever on at least one string of length } k \} \).

co-r.e. The complement is the set of \(\langle M, k \rangle \) encodings such that \(M \) halts on every string of length \(k \). You can just try \(M \) on each string of length \(k \) and check that it halts on each of these finitely-many strings.

To show that \(B \) is not recursive, we show that \(\overline{A_{\text{TM}}} \leq_m B \). That is, given \(\langle M, w \rangle \), we must construct (by effective procedure) an \(\langle M', k \rangle \) such that \(M \) doesn't accept \(w \) if and only if \(M' \) diverges on some string of length \(k \). To carry out the mapping, let \(k = 0 \) and have machine \(M' \) on input \(x \) behave as follows: \(M' \) clears off \(x \), writes \(w \) on its input tape, and then behaves like \(M \), accepting if \(M \) accepts and looping if \(M \) rejects.

So if \(M \) does not accept \(w \), then \(M' \) diverges on some string of length 0 (namely, the empty string), while if \(M \) accepts \(w \) then \(M' \) accepts all strings of length 0 (namely, the empty string).

1.3 \(C = \{ \langle M, k \rangle : M \text{ is a TM that accepts a string of length } k \text{ and diverges on a string of length } k \} \).

Assume that the underlying alphabet has at least two characters.

neither. Let 0 and 1 name two characters in the underlying alphabet. First we show that \(A_{\text{TM}} \leq_m C \). This shows that \(C \) is not co-r.e. Given \(\langle M, w \rangle \) we must construct by effective procedure \(\langle M', k \rangle \) such that \(M \) accepts \(w \) if and only if \(M' \) accepts some string of length \(k \) and it diverges on some string of length \(k \). To do this, set \(k = 1 \) and have machine \(M' \) on input \(x \) if \(x \neq 0 \) then have \(M' \) diverge, while if \(x = 0 \) then let \(M' \) simulate \(M \) on input \(w \), accepting if \(M \) accepts \(w \) and looping if \(M \) rejects \(w \).

Now if \(M \) accepts \(w \) then \(M' \) accepts some string of length 1 (the string 0) and diverges on some string of length 1 (the string 1). If, instead, machine \(M \) does not accept \(w \), then \(M' \) diverges on all strings of length \(k = 1 \). Thus \(A_{\text{TM}} \leq_m C \).

Next we show that \(\overline{A_{\text{TM}}} \leq_m C \). This shows that \(C \) is not r.e. Given \(\langle M, w \rangle \), we must construct by effective procedure \(\langle M', k \rangle \) such that \(M \) fails to accept \(w \) if and only if \(M' \) accepts some string of length \(k \) and diverges on some string of length \(k \). To do this, set \(k = 1 \) and have machine \(M' \) on input \(x \) behave as follows: if \(x \neq 0 \) then \(M' \) accepts; otherwise, when \(x = 0 \), have \(M' \) simulate \(M \) on input \(w \), accepting if \(M \) accepts \(w \) and looping if \(M \) rejects \(w \). Now if \(M \) fails to accept \(w \) then \(M' \) diverges on some string of length 1 (the string 0) and \(M \) accepts some string of length 1 (the string 1). On the other hand, if \(M \) accepts \(w \) then \(M' \) accepts all strings, and so all strings of length 1. Thus \(\overline{A_{\text{TM}}} \leq_m C \).

1.4 \(D = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \} \).
r.e. An NTM can guess a palindrome \(w \) in \(L(M) \) and then verify that \(w \) is indeed a palindrome and \(w \in L(M) \). The language is undecidable by Rice's theorem, which gives us its classification. But to prove "from scratch" that \(D \) not co-r.e., we show that \(A_{TM} \leq_m D \). Given \(\langle M, w \rangle \) we must produce (in a Turing-computable way) a machine description \(\langle M' \rangle \) such that \(M \) accepts \(w \) if \(M' \) accepts some palindrome. Well, define \(M' \) (on input \(x \)) as follows: Runs \(M' \) on \(w \). If \(M \) accepts \(w \), then accept (the input \(x \) to \(M' \)). If \(M \) rejects \(w \), then reject (the input \(x \) to \(M' \)). Then if \(M' \) accepts \(w \) we will have that \(L(M') = \Sigma^* \), which certainly contains a palindrome. If \(M' \) doesn't accept \(w \) then \(L(M') = \emptyset \), so \(M' \) accepts no palindrome. We are done.

1.5 \(E = \{ \langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) \oplus L(G_2) = \emptyset \}. \)

You may assume that \(L = \{ \langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \} \) is undecidable.

co-r.e. Two sets have empty symmetric difference iff they're the same; \(E \) is the set of all \(\langle G_1, G_2 \rangle \) where CFGs \(G_1 \) and \(G_2 \) denote the same language. An NTM can guess a string \(x \) in the symmetric difference of \(L(G_1) \) and \(L(G_2) \) and then verify this guess. To show that \(E \) is not decidable, we show that \(L \leq_m E \).

Given a CFG \(\langle G \rangle \), we map it to the pair \(\langle G, G_2 \rangle \) where \(G_2 \) is a fixed CFG the language of which is \(\Sigma^* \). Then \(L(G) \oplus L(G_2) = \emptyset \) iff \(L(G) = \Sigma^* \). The reduction is trivially computable.

1.6 \(F = \{ \langle M \rangle : \text{ \(M \) is a TM and } L(M) \text{ is recursive} \}. \)

neither. As the empty set \(\emptyset \) is recursive, Rice's theorem tells us that \(F \) is not r.e.. We must show that, in addition, it is not co-r.e.. To that end, let's reduce \(A_{TM} \leq_m F \). In particular, we must map an \(\langle M, w \rangle \) by a Turing-computable \(f \) to an \(M' \) such that \(M \) accepts \(w \) if \(L(M') \) is recursive. So let's have \(M' \), on input \(x \) behave as follows: first, run \(M \) on \(w \) for \(|x| \) steps. If \(M \) has accepted by this time, accept. Otherwise, parse \(x \) to a value \((M'', w'') \) and run \(M'' \) on \(w'' \), accepting if \(M'' \) accepts and rejecting if \(M'' \) rejects. Now if \(M \) accepts \(w \) then \(L(M') \) is co-finite and therefore recursive; while if \(M \) doesn't accept \(w \) then \(L(M') = A_{TM} \), which is not recursive. The mapping \(f \) that takes \(\langle M, w \rangle \) to \(\langle M' \rangle \) is certainly Turing-computable, so we are done.

Problem 2 Prove or disprove each of the following claims.

2.1 If \(A \leq_m A \). True. The identify function provides the needed mapping \(f \).

2.2 If \(A \leq_m B \) and \(B \leq_m C \), then \(A \leq_m C \). True. Given \(f \) many-one reducing \(A \) to \(B \) and \(g \) many-one reducing \(B \) to \(C \), their composition, \(g \circ f \), many-one reduces \(A \) to \(B \).

2.3 If \(A \leq_m B \) then \(\overline{A} \leq_m \overline{B} \). True. If \(f \) many-one reduces \(A \) to \(B \) then \(x \in A \) iff \(f(x) \in B \), which means that \(f \) itself many-one reduces \(\overline{A} \) to \(\overline{B} \), as \(x \notin A \) iff \(f(x) \notin B \).

2.4 If \(A \) is recursive, then \(A \leq_m a^*b^* \). True. Because \(A \) is decidable we can construct a Turing-computable function \(f \) where \(f(x) = \varepsilon \) if \(x \in A \) and \(f(x) = ba \) if \(x \notin A \). This function comprises a many-one reduction from \(A \) to \(a^*b^* \).

2.5 If \(A \leq_m B \) then \(B \leq_m A \). False. For example, \(a^*b^* \leq_m A_{TM} \) but \(A_{TM} \nleq_m a^*b^* \).

2.6 If \(A \leq_m B \) and \(B \leq_m A \) then \(A = B \). False. Eg, \(\{0\} \leq_m \{1\} \) and \(\{1\} \leq_m \{0\} \), but that doesn't mean \(\{0\} = \{1\} \).

Problem 3. Let us say that a nonempty set \(B \) is countable if you can list (possibly with repetitions) its elements \(B = \{a_1, a_2, a_3, \ldots \} \); more formally, there is a surjective\(^1\) function \(f \) from \(\mathbb{N} \) to \(B \). We'll say that the empty set is also countable. A set is uncountable if it is not countable.

\(^1\)Recall that a function \(f : A \rightarrow B \) is surjective (or onto) if for every \(b \in B \) there is an \(a \in A \) such that \(f(a) = b \).
3.1 Prove that any subset A of a countable set B is countable.

If $A = \emptyset$ this is trivially true, so suppose $A \neq \emptyset$ and fix $a \in A$. Let B be countable and let $f : \mathbb{N} \to B$ be a surjective function that demonstrates this. Define $g : \mathbb{N} \to A$ by $g(x) = f(x)$ if $x \in A$ and $g(x) = a$ otherwise. Then g is onto A, since for every $x \in A$ there is an $i \in \mathbb{N}$ such that $f(i) = x$ and, for this i, we also have that $g(i) = x$.

3.2 Fix an alphabet Σ. Prove that there are countably many finite languages over Σ.

Every finite subset of Σ^* can be specified by a string over $\Sigma^* \cup \{,\}$ (just list its elements). There are countably many strings over any alphabet: you can list the strings in lexicographic order.

3.3 Fix an alphabet Σ. Prove that there are uncountably many infinite languages over Σ.

Assume for contradiction that there is an enumeration L_1, L_2, \ldots of the infinite languages over Σ. Let w_1, w_2, \ldots be the lexicographic enumeration of all odd-length strings over Σ. Construct the language D as follows: if $|x|$ is even, say that $x \in D$; if $|x|$ is odd, define i so that $w_i = x$ and say that $x \in D$ iff $x \not\in L_i$. Then, for all i, we know that $D \neq L_i$ because $w_i \in D$ iff $w_i \not\in L_i$. Also, D is infinite because it contains all even-length strings.