Problem Set 9 Solutions

Problem 1. As you did last week, classify each of the following languages as **recursive**, **r.e.** but not decidable, **co-r.e.** but not decidable, or **neither** r.e. nor co-r.e. Giving reductions where appropriate, prove your results.

1.1 $A = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \}.$

r.e. An NTM can guess the string w of length k and verify that M accepts it.

However, A is not recursive. To see this, we show that $A_{\text{TM}} \leq_{\text{m}} A$. This means that given a string $\langle M, w \rangle$ we must construct $\langle M', k \rangle$ by effective procedure such that M accepts w if and only if M' accepts some string of length k. To do this, let k be arbitrary (eg, k = 1) and let M' be the following machine: on input x, M' ignores x, runs M on w, accepts if M does, and rejects if M rejects. Whenever M accepts w we will have that $L(M') = \Sigma^*$, so M' will accept a string of length k; while if M doesn't accept w then $L(M') = \emptyset$ so M' will not accept any string of length k.

1.2 $B = \{\langle M, k \rangle : M \text{ is a TM that runs forever on at least one string of length } k\}.$

co-r.e. The complement is the set of $\langle M, k \rangle$ encodings such that M halts on every string of length k. You can just try M on each string of length k and check that it halts on each of these finitely-many strings.

To show that B is not recursive, we show that $\overline{A_{\text{TM}}} \leq_{\text{m}} B$. That is, given $\langle M, w \rangle$, we must construct (by effective procedure) an $\langle M', k \rangle$ such that M doesn't accept w if and only if M' diverges on some string of length k. To carry out the mapping, let k = 0 and have machine M' on input x behave as follows: M' clears off x, writes w on its input tape, and then behaves like M, accepting if M accepts and looping if M rejects.

So if M does not accept w, then M' diverges on some string of length 0 (namely, the empty string), while if M accepts w then M' accepts all strings of length 0 (namely, the empty string).

1.3 $C = \{\langle M, k \rangle : M \text{ is a TM that accepts a string of length k and diverges on a string of length k}. Assume that the underlying alphabet has at least two characters.$

neither. Let 0 and 1 name two characters in the underlying alphabet. First we show that $A_{\text{TM}} \leq_{\text{m}} C$. This shows that C is not co-r.e. Given $\langle M, w \rangle$ we must construct by effective procedure $\langle M', k \rangle$ such that M accepts w if and only if M' accepts some string of length k and it diverges on some string of length k. To do this, set k = 1 and have machine M' on input x if $x \neq 0$ then have M' diverge, while if x = 0 then let M' simulate M on input w, accepting if M accepts w and looping if M rejects w.

Now if M accepts w then M' accepts some string of length 1 (the string 0) and diverges on some string of length 1 (the string 1). If, instead, machine M does not accept w, then M' diverges on all strings of length k = 1. Thus $A_{\text{TM}} \leq_{\text{m}} C$.

Next we show that $\overline{A_{\text{TM}}} \leq_{\text{m}} C$. This shows that C is not r.e. Given $\langle M, w \rangle$, we must construct by effective procedure $\langle M', k \rangle$ such that M fails to accept w if and only if M' accepts some string of length k and diverges on some string of length k. To do this, set k = 1 and have machine M' on input x behave as follows: if $x \neq 0$ then M' accepts; otherwise, when x = 0, have M' simulate M on input w, accepting if M accepts w and looping if M rejects w. Now if M fails to accept w then M' diverges on some string of length 1 (the string 0) and M accepts some string of length 1 (the string 1). On the other hand, if M accepts w then M' accepts all strings, and so all strings of length 1. Thus $\overline{A_{\text{TM}}} \leq_{\text{m}} C$.

1.4 $D = \{ \langle M \rangle : M \text{ is a TM that accepts some palindrome} \}.$

r.e. An NTM can guess a palindrome w in L(M) and then verify that w is indeed a palindrome and $w \in L(M)$. The language is undecidable by Rice's theorem, which gives us its classification. But to prove "from scratch" that D not co-r.e., we show that $A_{\text{TM}} \leq_{\text{m}} D$. Given $\langle M, w \rangle$ we must produce (in a Turing-computable way) a machine description $\langle M' \rangle$ such that M accepts w iff M' accepts some palindrome. Well, define M' (on input x) as follows: Runs M' on w. If M accepts w, then accept (the input x to M'). If M rejects w, then reject (the input x to M'). Then if M' accepts w we will have that $L(M') = \Sigma^*$, which certainly contains a palindrome. If M' doesn't accept w then $L(M') = \emptyset$, so M' accepts no palindrome. We are done.

1.5 $E = \{\langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are CFGs and } L(G_1) \oplus L(G_2) = \emptyset \}.$ You may assume that $L = \{\langle G \rangle : G \text{ is a CFG and } L(G) = \Sigma^* \}$ is undecidable.

co-r.e. Two sets have empty symmetric difference iff they're the same; E is the set of all $\langle G_1, G_2 \rangle$ where CFGs G_1 and G_2 denote the same language. An NTM can guess a string x in the symmetric difference of $L(G_1)$ and $L(G_2)$ and then verify this guess. To show that E is not decidable, we show that $L \leq_{\rm m} E$. Given a CFG $\langle G \rangle$, we map it to the pair $\langle G, G_2 \rangle$ where G_2 is a fixed CFG the language of which is Σ^* . Then $L(G) \oplus L(G_2) = \emptyset$ iff $L(G) = \Sigma^*$. The reduction is trivially computable.

1.6 $F = \{\langle M \rangle : M \text{ is a TM and } L(M) \text{ is recursive} \}.$

neither. As the empty set \emptyset is recursive, Rice's theorem tells us that F is not r.e.. We must show that, in addition, it is not co-r.e.. To that end, let's reduce $A_{\text{TM}} \leq_{\text{m}} F$. In particular, we must map an $\langle M, w \rangle$ by a Turing-computable f to an M' such that M accepts w iff L(M') is recursive. So let's have M', on input x behave as follows: first, run M on w for |x| steps. If M has accepted by this time, accept. Otherwise, parse x to a value $\langle M'', w'' \rangle$ and run M'' on w'', accepting if M'' accepts and rejecting if M''rejects. Now if M accepts w then L(M') is co-finite and therefore recursive; while if M doesn't accept w then $L(M') = A_{\text{TM}}$, which is not recursive. The mapping f that takes $\langle M, w \rangle$ to $\langle M' \rangle$ is certainly Turing-computable, so we are done.

Problem 2 Prove or disprove each of the following claims.

2.1 $A \leq_{\mathrm{m}} A$. **True.** The identify function provides the needed mapping f.

2.2 If $A \leq_{\mathrm{m}} B$ and $B \leq_{\mathrm{m}} C$, then $A \leq_{\mathrm{m}} C$. **True.** Given f many-one reducing A to B and g many-one reducing B to C, their composition, $g \circ f$, many-one reduces A to B.

2.3 If $A \leq_{\mathrm{m}} B$ then $\overline{A} \leq_{\mathrm{m}} \overline{B}$. **True**. If f many-one reduces A to B then $x \in A$ iff $f(x) \in B$, which means that f itself many-one reduces \overline{A} to \overline{B} , as $x \notin A$ iff $f(x) \notin B$.

2.4 If A is recursive, then $A \leq_{\mathrm{m}} a^*b^*$. **True.** Because A is decidable we can construct a Turing-computable function f where $f(x) = \varepsilon$ if $x \in A$ and f(x) = ba if $x \notin A$. This function comprises a many-one reduction from A to a^*b^* .

2.5 If $A \leq_{\mathrm{m}} B$ then $B \leq_{\mathrm{m}} A$. False. For example, $a^*b^* \leq_{\mathrm{m}} A_{\mathrm{TM}}$ but $A_{\mathrm{TM}} \not\leq_{\mathrm{m}} a^*b^*$.

2.6 If $A \leq_{m} B$ and $B \leq_{m} A$ then A = B. False. Eg, $\{0\} \leq_{m} \{1\}$ and $\{1\} \leq_{m} \{0\}$, but that doesn't mean $\{0\} = \{1\}$.

Problem 3. Let us say that a nonempty set B is countable if you can list (possibly with repetitions) its elements $B = \{a_1, a_2, a_3, \ldots\}$; more formally, there is a surjective¹ function f from N to B. We'll say that the empty set is also countable. A set is uncountable if it is not countable.

¹Recall that a function $f: A \to B$ is surjective (or onto) if for every $b \in B$ there is an $a \in A$ such that f(a) = b.

3.1 Prove that any subset A of a countable set B is countable.

If $A = \emptyset$ this is trivially true, so suppose $A \neq \emptyset$ and fix $a \in A$. Let B be countable and let $f : \mathbb{N} \to B$ be a surjective function that demonstrates this. Define $g : \mathbb{N} \to A$ by g(x) = f(x) if $x \in A$ and g(x) = a otherwise. Then g is onto A, since for every $x \in A$ there is an $i \in \mathbb{N}$ such that f(i) = x and, for this i, we also have that g(i) = x.

3.2 Fix an alphabet Σ . Prove that there are countably many finite languages over Σ .

Every finite subset of Σ^* can be specified by a string over $\Sigma^* \cup \{,\}$ (just list its elements). There are countably many strings over any alphabet: you can list the strings in lexicographic order.

3.3 Fix an alphabet Σ . Prove that there are uncountably many infinite languages over Σ .

Assume for contradiction that there is an enumeration L_1, L_2, \ldots of the infinite languages over Σ . Let w_1, w_2, \ldots be the lexicographic enumeration of all odd-length strings over Σ . Construct the language D as follows: if |x| is even, say that $x \in D$; if |x| is odd, define i so that $w_i = x$ and say that $x \in D$ iff $x \notin L_i$. Then, for all i, we know that $D \neq L_i$ because $w_i \in D$ iff $w_i \notin L_i$. Also, D is infinite because it contains all even-length strings.