(1) List, in lexicographic order, the first five strings of \(\{a, bb\}^* \).

\[\epsilon, a, aa, bb, aab \]

(2) How many strings of length 5 are there in \(\{0, 1, 10\}^* \)?

32

(3) Darken the correct answer.

- True False There is an infinite language with an infinite complement.
- True False If language \(A \) is finite and language \(B \) is infinite then \(A \circ B \) is infinite.
- True False \(L^+ \subseteq L^* \) for any language \(L \).

(4) Give a regular expression the language of which is all binary strings that start with “01” and end with “10”. Make it as short as you can.

\[01(01)^*10 \cup 010 \]

(5) Draw a DFA for the language \(L \) of odd-length binary strings. You will need 2 states; don’t use more. Remember to mark in the customary way the start state, the final state(s), and all transitions.

1Lexicographic order of \(L \): list all strings in \(L \) of length 0; then all strings in \(L \) of length 1; then all strings in \(L \) of length 2; and so on. Within a given length: use alphabetical order, for some understood ordering of characters. In this example, \(a < b \).