Quiz 4 Solutions

(1) Write a regular expression for the language of the following NFA M_{1}. Make it as simple as possible. Use standard abbreviations, not writing the concatenation symbol or extra parentheses.

$$
(a \cup b)^{*} b b
$$

(2) Suppose L is accepted by a 10 -state DFA M_{2}. Using constructions described in class, we could convert M_{2} into a 20 -state NFA M_{2}^{\prime} for $L \bar{L}$ (the bar denoting the complement of the language). We could then convert M_{2}^{\prime} into a 2^{20}-state DFA for $L \bar{L}$.
(3) Darken the box to indicate if the statement is True or False. Really make your mark dark. As always, a statement is True if it is always true; otherwise it is False.

True Every regular language can be accepted by a DFA with an odd number of states.
True Every regular language can be accepted by a DFA whose start state is never visited twice.
Note: these were both taken from PS2.
(4) Same instructions. Throughout, fix an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

True Suppose there is a $q_{0} \rightsquigarrow q$ path in the diagram for M where $q \in F$ and the concatenation of edge-labels along the path is s. Then M accepts s.
False Suppose there is a $q_{0} \rightsquigarrow q$ path in the diagram for M where $q \notin F$ and the concatenation of edge-labels along the path is s. Then M rejects s.
(5) Let's begin a proof that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

Assume for contradiction that L is regular. Then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L. Let $N=|Q|$. Consider the $N+1$ strings $\varepsilon, a, a a, \ldots, a^{N}$. Each of these strings w determines a state $\delta^{*}\left(q_{0}, w\right)$. By the pigeonhole principle (PHP), we know that some two of these states are the same). And so on...
Make sure that whatever you write gives grammatical English.

