Quiz 4 Solutions

(1) Write a regular expression for the language of the following NFA M_1. Make it as simple as possible. Use standard abbreviations, not writing the concatenation symbol or extra parentheses.

```
 p  a, b
   b   q
    b  r
```

\[(a \cup b)^*bb\]

(2) Suppose L is accepted by a 10-state DFA M_2. Using constructions described in class, we could convert M_2 into a 20-state NFA M'_2 for L' (the bar denoting the complement of the language). We could then convert M'_2 into a 20-state DFA for L'.

(3) Darken the box to indicate if the statement is True or False. Really make your mark dark.

True Every regular language can be accepted by a DFA with an odd number of states.

True Every regular language can be accepted by a DFA whose start state is never visited twice.

Note: these were both taken from PS2.

(4) Same instructions. Throughout, fix an NFA $M = (Q, \Sigma, \delta, q_0, F)$.

True Suppose there is a $q_0 \leadsto q$ path in the diagram for M where $q \in F$ and the concatenation of edge-labels along the path is s. Then M accepts s.

False Suppose there is a $q_0 \leadsto q$ path in the diagram for M where $q \not\in F$ and the concatenation of edge-labels along the path is s. Then M rejects s.

(5) Let’s begin a proof that $L = \{a^n b^n : n \geq 0\}$ is not regular:

Assume for contradiction that L is regular. Then there is a DFA $M = (Q, \Sigma, \delta, q_0, F)$ that accepts L. Let $N = |Q|$. Consider the $N + 1$ strings $\varepsilon, a, aa, \ldots, a^N$. Each of these strings w determines a state $\delta^*(q_0, w)$. By the pigeonhole principle (PHP), we know that some two of these states are the same. And so on ...