Quiz 4

Firstname Lastname:
ID\#
Seat\# -

- Don't sit next to anyone you know.
- Don't turn over this paper until you are asked to.
- When you finish, put this side up once again.
- Most or all problems will be graded all-or-northing.
- Relax, these quizzes are too insignificant to get stressed over.

Happy Friday!
phil rogaway
(1) Write a regular expression for the language of the following NFA M_{1}. Make it as simple as possible. Use standard abbreviations, not writing the concatenation symbol or extra parentheses.

\square
(2) Suppose L is accepted by a 10 -state DFA M_{2}. Using constructions described in class, we could convert M_{2} into a \square-state NFA M_{2}^{\prime} for $L \bar{L}$ (the bar denoting the complement of the language). We could then convert M_{2}^{\prime} into a \square-state DFA for $L \bar{L}$.
(3) Darken the box to indicate if the statement is True or False. Really make your mark dark. As always, a statement is True if it is always true; otherwise it is False.

True False Every regular language can be accepted by a DFA with an odd number of states. | True | False | Every regular language can be accepted by a DFA whose start state is never |
| :--- | :--- | :--- | visited twice.

(4) Same instructions. Throughout, fix an NFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$.

True False Suppose there is a $q_{0} \rightsquigarrow q$ path in the diagram for M where $q \in F$ and the concatenation of edge-labels along the path is s. Then M accepts s.
True False Suppose there is a $q_{0} \rightsquigarrow q$ path in the diagram for M where $q \notin F$ and the concatenation of edge-labels along the path is s. Then M rejects s.
(5) Let's begin a proof that $L=\left\{a^{n} b^{n}: n \geq 0\right\}$ is not regular:

Assume for contradiction that L is regular. Then there is a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ that accepts L. Let $N=|Q|$. Consider the $N+1$ strings \square Each of these strings w determines a state $\delta^{*}\left(q_{0}, w\right)$. By the pigeonhole principle (PHP), we know that some two of these states \square. And so on ...
Make sure that whatever you write gives grammatical English.

