Quiz 6

Firstname Lastname: ___________________________ ID# ___________ Seat# ___

- Don’t sit next to anyone you know.
- Don’t turn over this paper until you are asked to.
- When you finish, put this side up once again.
- Most or all problems will be graded all-or-nothing.
- Relax, these quizzes are too insignificant to get stressed over.

Happy Friday!

phil rogaway
(1) Suppose you use the procedure described in class to convert the following NFA M into a right-liner grammar $G = (V, \Sigma, R, S)$ for the same language. How many rules will G have? (I’m only asking for the number of rules; no need to list them. Remember to include in your count both rules of the form $A \rightarrow aB$ and any of the form $A \rightarrow \varepsilon$, where A and B are variables and a is a terminal.)

![NFA Diagram]

(2) Write the rules for a CFG $G = (V, \Sigma, R, S)$ for the language $L = \{a^n \# a^n : n \geq 0\}$. Two rules suffice, so please don’t use more. The alphabet is $\Sigma = \{a, \#\}$.

(3) Define what it means for a CFG $G = (V, \Sigma, R, S)$ to be ambiguous. Make your English grammatical and precise, and don’t use any form of the word “ambiguous” in your definition.

(4) Below is the Turing Machine M described in class that accepts $L = \{a^n b^n : n \geq 1\}$.

![Turing Machine Diagram]

Suppose you run M on $a^{10} b^{10}$. When it accepts, the tape will have on it how many a’s, b’s, A’s, and B’s?

- a:
- b:
- A:
- B:

(5) Darken the box if the statement is true.

- [] Every regular language is context free.
- [] An unrestricted grammar could have a rule $A d \rightarrow cB$ (with A, B variables, c, d terminals)