Quiz 9 Solutions

For this quiz I want you to prove that

\[A = \{ \langle M, k \rangle : M \text{ is a TM that accepts at least one string of length } k \} \]

is undecidable. Do this with a reduction involving \(A_{\text{TM}} \) or \(\overline{A_{\text{TM}}} \). Make your proof succinct, legible, and logical. Write exclusively in grammatical English sentences.

Setup. Since \(A \) is r.e., we will show that it is undecidable by showing that \(A_{\text{TM}} \leq_m A \). To do this, we must construct a Turing-computable function that maps a string \(\langle M, w \rangle \) to a string \(\langle M', k \rangle \) such that TM \(M \) accepts \(w \) if and only if TM \(M' \) accepts some string of length \(k \).

Construction. Given \(\langle M, w \rangle \) the reduction returns \(\langle M', k \rangle \) where \(k \geq 0 \) is an arbitrary fixed value, say \(k = 0 \), and TM \(M' \) is the following machine:

Machine \(M' \), on input \(x \):
- Run \(M \) on \(w \)
- If \(M \) accepts then accept
- If \(M \) rejects then reject

Analysis. If \(M \) accepts \(w \) then we will have that \(L(M') = \Sigma^* \), so \(M' \) will accept a string of length \(k \) (as it accepts all strings of all lengths). On the other hand, if \(M \) does not accept \(w \) then \(L(M') = \emptyset \) so \(M' \) will not accept any string of length \(k \) (as it accepts no string of any length). Finally, the function that computes \(\langle M', k \rangle \) from \(\langle M, w \rangle \) is clearly computable.