
ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

1

ECS 127 – Cryptography – Winter 2019 – Phillip Rogaway

These are rough notes to keep me on track in lecture. They are
written for me, not for students. Use at your own risk, knowing that
the notes will not explain everything and may diverge greatly from
what we actually do in class.

Lecture 1 - ECS 127 - Spring 2016 – 1/9/2019

Today: o Admin stuff:
 o Introduction:

- Four “basic” problems of cryptography

Admin stuff

- Course homepage: search “Rogaway”; follow the 127 link.
https://tinyurl.com/ecs127-spring19 class webpage, incl. course info
sheet: go to my homepage.
- Modest over-enrollment. It will clear
- Homework – work with at most one partner
- Academic misconduct warning: an “F” grade for any academic
misconduct.
- Needed background: mathematical maturity. Understanding ECS 20 or
MATH 108 is the minimum.
- We will not follow any book. This is a problem for some students.
Understanding what is presented in the classroom is key. You will be
in trouble if you miss lectures.
- Videos: Do not rely on them.

Introduction

4 Basic problem of cryptography

Basic sample cryptographic problems: start with the "basic five"
{sym, asym} x {priv, auth}. Explain! Eg:

 K C = EK(M) K

 S --------------------> R DK(C) = M

 |
 \|/
 A

Introduce basic vocabulary: plaintext, ciphertext, key, signature,

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

2

MAC, public key, symmetric, asymmetric, digital signature, encryption,
decryption.

Discuss the implicit assumption in this picture (A doesn’t control
what’s encrypted, encryption is deterministic).

Discuss that which is necessarily leaked in the picture.

Discuss alternative ways to create asymmetry (mostly suggested by
students):

1. Multiple channels not all of which are tapped (secret-sharing
approach)

2. Interaction (SKE-first approach)
3. Noisier channel for the adversary than the good player
4. Meet up in person

Lecture 2 - ECS 127 – Winter 2019 – 1/9/2019

Today: o Introduction, part 2: beyond the “basic four”
1 Secret Key Exchange (SKE) and Authenticated Key Exchange (AKE)
2 Secret-sharing
3 MPC/SFE. Average-salary special case. Physical soln, math. soln
4 FHE

5. Obfuscation

Review
 1. Four "core" problems

Quiz questions:
1) What did we call the tool usually used for achieving authenticity
in the symmetric setting?
2) Suppose we are secret-sharing a byte among 10 people. What’s the
smallest prime field we can use? (ans: Z_257)

Secret Sharing:
 (Share, Recover). Message space \calM, say 0,…, m-1. Let S be
secret we want to share. Share(S)  S_1, …, S_n such that any k of
them let us recover the secret S; but k-1 or fewer of them tell you
nothing. A (k,n) threshold scheme.
 First show how to do 1-out-of-2 secret sharing.
 Solution: choose k-1 random numbers in Z_p (p to be determined)
a_1, …, a_k-1 and let f(x)=s + a_1 x + x_2 x^2 + … + a_{k-1} x^{k-1}
mod p. Give party i the value f(i).
 To recover: we have k points on a polynomial (j, f(j)).
Fundamental Theorem of Algebra: k points on a polynomial determine a
unique polynomial of degree <= k-1. This is true in any finite field.
 Finite field: a field has two operations, called addition and multiplication; it is an abelian
group under the addition, with 0 as additive identity; the nonzero elements are an abelian group

https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Abelian_group
https://en.wikipedia.org/wiki/Additive_identity

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

3

under the multiplication, with 1 as multiplicative identity; the multiplication is distributive over the
addition.

Two new problems.

 1. Average salary – Explain problem. Physical soln. Eg: pour 1ml H20
for every $1000/yr.
earned. Assumes a prior bound – the size of the vessel into which
water is poured.

give a communication-based solution. (Goldreich, Micali, Wigderson
1987)/ Use Group of integers mod N. Introduce: modular arithmetic: the
ring Zn.

What is cryptography all about:
- Rivest: "communications in the presence of an adversary"

Basic character

- Tiny field, but very well known
- Traditional taxonomy

 Cryptology
 / \ but nobody really uses the
 / \ word “cryptology”, substituting
 Cryptography Cryptanalysis “cryptography”

- Alternative taxonomy
 1. Academic folks
 Crypto community
 Academic users of cryptography
 (people who do security, privacy, …)
 2. Industry people
 3. Cypherpunks and hobbyists
 4. Spooks: military (NSA)

- Yet another taxonomy
 1. Practical protocols
 for conventional aims

https://en.wikipedia.org/wiki/Multiplicative_identity

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

4

 for exotic aims
 2. Impractical protocl for “exotic” aims

The character of cryptographic work

 a. crypto-for-security -- industry side
 b. crypto-for-privacy -- tiny, cypherpunks, PETS community
 c. crypto-for-crypto -- crypto community
 d. crypto-for-power -- intelligence agency.
 Other end of crypto-for-privacy

Academic crypto: Small. Well recognized. Subtle. Mathematical. Often
of limited utility.

Cryptographic activities:

 Recognize - a new problem
 Define (definitional enterprise) - making definitions
 Construct - making abstract schemes
 Prove
 Standardize
 Design SW/HW artifact
 Implement
 Cryptanalyze (break) a scheme
 Cryptanalyze (break) a system
 Contextualize - legally, politically,
 Critique - not much of this goes on

- Academic crypto: tons of recognition:
 10/64 Turing awards.

- Hard. Defeat universal quantifier. "Don't try this at home."

- Many people think cryptography = encryption. Seriously wrong.
 Cryptography includes encryption, but is much broader.

- Many people think that cryptography = foundations of computer
security. Also wrong.

- Strong military history. Some date cryptography back to Julius
Caesar

- Subtle. Some books do not get across the subtlety of this subject)

- Kerckhoffs's principle:

 A cryptosystem should remain secure even if everything about the
system, except the key, is publicly known.

Negation: "Security through obscurity"

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

5

“Kerckhoffs said neither 'publish everything' nor 'keep everything
secret'; rather, he said that the system should still be secure even
if the enemy has a copy." (Steve Bellovin, 2009)

[Wikipedia] Original paper (1883) named six design principles:

1. The system must be practically, if not mathematically,
indecipherable;

2. It should not require secrecy, and it should not be a problem if
it falls into enemy hands; (The only part that people remember)

3. It must be possible to communicate and remember the key without
using written notes, and correspondents must be able to change or
modify it at will;

4. It must be applicable to telegraph communications;
5. It must be portable, and should not require several persons to

handle or operate;
6. Lastly, given the circumstances in which it is to be used, the

system must be easy to use and should not be stressful to use or
require its users to know and comply with a long list of rules.

“Kerckhoffs' principle applies beyond codes and ciphers to security
systems in general: every secret creates a potential failure point.
Secrecy, in other words, is a prime cause of brittleness—and therefore
something likely to make a system prone to catastrophic collapse.
Conversely, openness provides ductility.” B. Schneier, 2002

Philosophical/theoretical problem with Kerckhoffs’s principle: its
formal meaninglessness. One can always regard the key as specifying
the algorithm, in the spirit of a universal TM.

Lecture 3 - ECS 127 - Spring 2016 - 4/1/2016

Today:
 o Finite fields, less rushed
 o Secure Multiparty Computation (MPC)(SMC)
 o Probability review

--

Finite fields (less rushed).

Background on finite fields: First review finite fields: a set F with

operations +, ⋅ satisfying the usual properties: F under addition is a
group (the identity denotes 0); F\{0} under multiplication is a group

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

6

(its identity denoted 1); and multiplication distributes over
addition. Finite fields: the underlying set is finite.

A well-known theorem of algebra says that there are finite fields of

size pα for any prime p and number α ≥1; that there are no other finite
fields; and that each of these fields is unique, up to the naming of
elements. So when I describe them, you know all the finite fields. The

field with N elements is denoted FN or GF(pα). Eg, GF(2128).

 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

f(x) = x^3 + 1 over GF(5)
f(0) = 1
f(1) = 2
f(2) = 4
f(3) = 3
f(4) = 0

Go back to the 1-of-2 secret sharing. Can use to transmit a bit.
This is the one-time pad.

Generalize to transmitting a two-digit number secure.

Multiparty computation problem.
Special case of computing the average.
First, a physical-model solution

Review:
 Last time: Dating Problem and the Avg Salary Problem.
 Give new soln. for dating problem: “Alice and Bob agree:
 if you want to go on a date, show up at such-and-such
 coffee shop at such-and-such time.”

Substitution cipher:
Our first encryption scheme. Lousy one, but it is an encryption
scheme.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

7

Plaintext is regarded as a sequence of characters over some
alphabet Σ: message M ∈ Σ*.

[tutorial: briefly review formal languages: alphabet, strings, Σ*]

For a substitution cipher, the encryption key K specifies a
permutation e(x): Σ → Γ.
 (one-to-one and onto function)
Let K be the set of all keys, ie, all permutation on Σ. How big is

this set?

[[tutorial on permutations.
 Recall definition of a permutation. Explain how to procedurally
 understand it. Use Σ={a,...,Z}
 What is |K|? d! where d=|\calK|.
 If we think of \calK as "ASCII characters": 128! \approx 10^215
 If we think of \calK = {a,...,z} then 26! \approx 2^88
 (how to approximate 128! on your calculator?
 ln(n!) ≈ n ln(n) // Stirling's formula.
 // proof: ln(n!) = Σ_{x=1}^n ln(x)
 ≈ Integral_1^n ln(x) dx
 = x ln x - x \bigbar_1^n
 = n ln n - n - 1
 ≈ n ln n – n
 ≈ n ln n

 log(128!) = ln(128!)/ln(128) ≈ (128*ln(128)-128)/ln(10)
 = 214
]]

Substitution cipher

Given permutation e: Σ → Σ (the key), extend e pointwise to define
 e(x1 ... xm) = e(x1) ... e(xm)
Let f = inverse of e.

Example: Σ = 26 characters {a,..., z}
 27 characters {a, ..., z, BLANK}
 95 characters of printable ASCII
Note: when Σ gets really large, like {0,1}128, the ideal substitution
cipher becomes a useful tool we will study extensively – a
blockcipher.

Cryptanalysis of substitution cipher
(ciphertext-only attack, assuming message space is English, say)

Given a ciphertext C = e(M), want to find M. In fact, find e (or,
equivalent, f).

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

8

Write f(c1 ... cm) = f(c1) ... f(cm)

Practical problem: given knowledge of the plaintext space, as
specified by a corpus; and given a ciphertext that we suspect “looks
like” the corpus. Want: the plaintext.

Could try to use single-letter frequencies, a dictionary, and
backtracking. Here is a somewhat more sophisticated approach, using a
hidden Markov model and a random walk.

Diaconis algorithm

Based on the corpus text, compute
 M[x,y] = the probability of the two-letter sequence xy

where to get these values? Just grab text that you think looks like
the target text, eg, they are of the same language.)

Proposed decryption algorithm: see next lecture.

Lecture 4 - ECS 127 - Winter 2019 - 1/13/2019

Today: o Symmetric encryption

 - OTP & notions of security

Review: o Groups, Fields. ZN, FN. Average salary protocol. Let
James finish it.
 n parties, 1..n. Each party holds a secret value 0 <= ai < max
 Round 1: Party i generates uniform values in ZM ai1,...,ain
 that sum to ai. Send aij to party j.
 Round 2: Sum the n values received mod M. Announce it.
 Finish: Each party sum the n sums just announced mod M.
 They output 1/3 of this value (in the reals).
Let M = n max.

Encryption scheme syntax
The following subject to change (when we allow probabilistic,
stateful, or nonce-based schemes)
Encryption scheme Π = (K,E, D)

K prob alg that takes no input and outputs a string in {0,1}*.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

9

E : K × M → C alg that takes input K ∈ K and M ∈ M and

 returns C ∈ C. May be deterministic, probabilistic, or stateful. Show what that does to

signature. Encryption schemes that “shut up” – output ⏊ if their unhappy
with the number or length of inputs.

D: K × C → M ∪ {⏊} det alg that takes K ∈ K and C ∈ M and

 returns M ∈ M or ⏊.

Usually assume that M, C ⊆ {0,1}∗

Assume reasonableness of M:

 M ∈ M ⇒ {0,1}|M| ⊆ M

Develop correctness for one-time and then probabilistic encryption,
leaving stateful as an exercise.

Correctness:
 (∀ K)(∀ m) (∀ M1, …,Mm ∈ M)

 for i from 1 to m do if Ci ↞ EK(Mi) and Ci ≠⏊ then Mi = DK(Ci)

Finished is final, and only depends on lengths:
 Once E outputs ⏊, its output stays ⏊.

 The length of an output depends only on the length of an input.

The reasonableness condition ensures that the message space M of Π

can be unambiguously defined: the set of all M such that EK(M) ≠ ⏊.

 Require: M≠ ∅.

OTP(k):

 K: output a uniformly random string in {0,1}k

 EK(M): return M ⊕ K[1..|M|]

 DK(C): if |C|>k then return ⏊ else return C ⊕ K[1..|C|]

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

10

Three measures of security:

==
(1) Perfect privacy (Shannon)
 ∀ M0, M1 where |M0|=|M1|
 ∀ C
 Pr[E(K,M0)=C] = Pr[E(K,M1)=C]

(2) Shannon privacy: For all distributions M

 where P(M)>0 and P(M')>0 implies |M|=|M'|)

 Pr[M=M0 | EK(M)=C] = Pr[M=M0]

 (Review the def of conditional probability.)

(3) “Modern” privacy, or, better, real-or-zero privacy

 Pr[AE(K,.) → 1] = Pr[AE(K,0^.) → 1]

 where A asks only a single query to its oracle **

 Said differently:

 Adv_Π(A) = Pr[AE(K,.) → 1] - Pr[AE(K,0^.) → 1] = 0

Lecture 5 - ECS 127 - Winter 2019 - 1/15/2019

Today: o Symmetric encryption, cont.

 - To more notions of security

First review syntax, Π = (K,E, D) where

K prob alg that takes no input and outputs a string in {0,1}*.

E : K × M → C det alg that takes input K ∈ K and M ∈ M and

 returns C ∈ C.

D: K × C → M ∪ {⏊} det alg that takes K ∈ K and C ∈ C and

 returns M ∈ M or ⏊.

Usually assume (1) string-valued M and C; (2) the reasonableness
property M: if you can encrypt some string of a given length, you can

encrypt all strings of that length; and (3)one more property I think I
forgot to mention, that the length of a ciphertext depends only on the

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

11

length of the corresponding plaintext: |C| = ε (|M|), normally
|C|=|M|+τ. Then we defined perfect privacy.

(1) Perfect privacy (Shannon)
 (∀ M0, M1 where |M0|=|M1|)
 (∀ C)
 Pr[E(K,M0)=C] = Pr[E(K,M1)=C]

“Ciphertexts are attributable no more to one plaintext than to any
other plaintext of the same length”

Scheme: OTP(k):

 K: outputs a uniformly random string in {0,1}k

 EK(M): return M ⊕ K[1..|M|)

 DK(C): return C ⊕ K[1..|C|] (if we take C = {0,1}k)

(2) Shannon privacy: (∀ distributions M

 where P(M)>0 and P(M')>0
 implies |M|=|M'|)

 (∀M0∈M) (∀C∈C s.t. Pr M K [EK(M)=C]>0)

 Pr M K [M=M0 | EK(M)=C] = Pr[M=M0]

 (Review the def of conditional probability.) I don’t actually like
this definition, because assuming a distribution on M seems off. We

don’t now anything about it. You could say we’re not assuming a
distribution on it; we quantify over all distributions. But that seems
off, too. It might not be a distribution: I could encrypt a random
string, and then encrypt the ciphertext. That’s not any (fixed)
distribution. And we know some distributions aren’t even samplable:
why are we attending to them!

The truth is that both of these definitions are lousy, even if they’re
kind of classical. They don’t generalize well.

(3) IND privacy (Real-or-Enc0)

 Pr[AE(K, ⋅) → 1] = Pr[AE(K,0⋅) → 1]

 where A asks only a single query to its oracle **

 Said differently:

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

12

 AdvΠ(A) = Pr[AE(K,.) → 1] - Pr[AE(K,0^.) → 1] = 0

==
Slowly explain intuition behind each definition, and the necessity of
the “technical” conditions added.

All of these equivalent (once we add in all the red stuff). Omit
proof, but argue that the OTP(k) satisfies perfect privacy and real-
or-zero privacy. In particular, explain why for OTP[k], all M and C.

 Pr[EK(M)=C] = 2-|M| if |C| = |M|

 = 0 o.w.

From a modern point of view, definitions (1) and (2) are not
satisfactory, and the OTP is not satisfactory, because the one-time
restriction is severe and, also, one could reasonably expect an
encryption scheme to achieve more than pure privacy.

Lecture 6 - ECS 127 - Winter 2019 - 1/17/2019

Today: o Multiquery IND security
 o Vernam ciphers and PRGs
 o A concrete solution: RC4

Q3. Define Perfect Privacy for a symmetric encryption scheme. I will start you out.
 Sym enc scheme Π=(K,E,D) achieves perfect privacy if
 (for all such that)
 (for all)
 Pr [] = Pr []

Encryption scheme Π = (K,E, D)

Perfect privacy
 (∀ M0, M1 where |M0|=|M1|)
 (∀ C)
 Pr[E(K,M0)=C] = Pr[E(K,M1)=C]

“Ciphertexts are attributable no more to one plaintext than to any
other plaintext of the same length”

IND privacy (Real-or-Enc0)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

13

 AdvΠ(A) = Pr[AE(K,.) → 1] - Pr[AE(K,0^.) → 1] = 0

“An oracle that encrypts what you ask is indistinguishable from an
oracle that encrypts garbage”

Proposition An encryption scheme Π = (K,E, D) achieves perfect

privacy iff it achieves (perfect) 1-query IND privacy.

The real power is IND cleanly generalizes to allowing multiple queries
and allowing nonzero advantage. Suppose we first change the syntax in
of an encryption scheme to allow for state and/or probabilism. Then
we have our first “satisfactory” definition for what an encryption
scheme should do. A good encryption scheme is one for which
“reasonable” adversaries achieves “small” advantage.

First two problems. (1) Only good for one message – solution is
to move to IND security. (2) Keys are necessarily long:

Proposition An enc scheme Π that achieves perfect privacy must have

at least as many keys as possible plaintexts (whence |K| ≥|M|).

Proof. Assume here the K is finite (o.w. we are done). Fix a

ciphertext C in the ciphertext space. Let
PossibleC = {M ∈M: ∃K ∈ K s.t. EK(M)=C}. Because

|PossibleC |<|M|, there is an M0 ∈M for which M0 ∉PossibleC .

Because PossibleC ≠ ∅ ∃ M1 ∈ PossibleC . The Pr[EK(M0)=C]=0 and
Pr[EK(M1)=C]>0 because is K finite.

OTP*(k):

 K: output a uniformly random string in {0,1}k

 EK(M): static s ← 0

 if s +|M|>k then return ⏊
 C ←M ⊕ K[s+1..s+|M|]
 C ←(C,s)
 s ←s + |M|
 return C

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

14

 DK(C): parse C into (C,s)

 if |C|+s>k then return ⏊
 return C ⊕ K[s+1..|C|]

Stateful: No longer matches the syntax of an encryption scheme as we
defined it: have to modify E. In this case, the syntax is updated so

that E is regarded as stateful.

Def. A (classical) PRG is a function g: {0,1}n  {0,1}N where N > n
or. An (arbitrary-stretch) PRG is a procedure g: M  {0,1}∞ that, on

input of a key K, returns an “infinite” string g(K).

Advprg(A)

RC4: Rivest, 1987. Initially, proprietary to RSA Security.
Attacks began in 2001, continue until just last year

Algorithm RC4(K) //PRG. K is a key of length 1 <= |K| <= 255

// Key scheduling. K a byte string of 1..128 bytes (typically 5-16)
for i=0 to 255 do S[i] := i
j := 0
for i := 0 to 255 same as K||K||K||K …
 j := (j + S[i] + K[i mod |K|]) mod 256
 swap values of S[i] and S[j]

// Generate stream //
i := j := 0
do forever
 i := (i + 1) mod 256
 j := (j + S[i]) mod 256
 swap values of S[i] and S[j]
 output S[(S[i] + S[j]) mod 256]

0 1 2 3 4 5 6 7
i
j
0 1 2 3 4 5 6 7
1 2 7 1 2 7 1 2

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

15

In use, we need something like the IV, and so, in applications like
WEP, it follows the key. Gives rise to poor key agility.

Regardless not even close to being secure in the PRG sense (as above,
but with no IV – only one output).

Lecture 7 - ECS 127 - Winter 2019 - 1/23/2019

Today: o Review of RC4; review of security notions: IND, PRG
 o Playing with the definitions: two variants
 o The idea of a reduction

IND: An encryption scheme Π = (K,E, D)

 AdvΠ(A) = Pr[AE(K,.) → 1] - Pr[AE(K,0^.) → 1] = 0

“An oracle that encrypts what you ask is indistinguishable from an
oracle that encrypts garbage”

A PRG is a fnct G: K → L where K = {0,1}k and L = {0,1}l for l>k or l=∞

 AdvG(A) = Pr[K ⇷{0,1}k; Y ← G(K): A(Y) ⇒ 1] –
 Pr[Y ⇷ L : A(Y) ⇒ 1]

Discuss what good and bad mean for IND or PRG security: bad schemes
are those for which there exists a reasonable adversary that gains
high advantage. Good schemes are those for which there does not exist
a reasonable adversary that get high advantage. High advantage means
“close pretty far from 0”, like 0.5, 0.1, even 0.01. Small advantage
means really close to 0, like 2-50. Reasonable means that it doesn’t
consume too much data (eg, less than a few terabytes)and it doesn’t
take too much time (like, less than 260 steps).

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

16

Variants: (1) Adding absolute values

 Adv1G(A) = | Pr[K ⇷{0,1}k; Y ← G(K): A(Y) ⇒ 1] –
 Pr[Y ⇷ L : A(Y) ⇒ 1] |

The notion does change, but in a rather trivial way: in there exists
an adversary that does well in one sense, there exists a comparably
efficient adversary that does well in the other sense. It just
negates what it is about to output.

(2) Guessing which world one is in:
 Adv2G(A) = 2 Pr[b ⇷{0,1}; if b=1 then K ⇷{0,1}k; Y ← G(K)
 else Y ⇷ L : A(Y) ⇒ b] – 1

This one is exactly equivalent:
2 Pr[A(Y) ⇒ b] – 1 = 2 (Pr[A(Y) ⇒ 1 | b=1] Pr[b=1] +
 Pr[A(Y) ⇒ 1 | b=0] Pr[b=0]) - 1
 = Pr[A(Y) ⇒ b | b=1] + Pr[A(Y) ⇒ b | b=0] - 1
 = Pr[A(G(K)) ⇒ 1] + Pr[A($) ⇒ 0] - 1
 = Pr[A(G(K)) ⇒ 1] + (1-Pr[A($) ⇒ 1]) - 1
 = Pr[A(G(K)) ⇒ 1] - Pr[A($) ⇒ 1]
 = AdvG(A)

We showed had to make a (stateful) encryption scheme out of a PRG. It
can encrypt up to l bits. The Vernam construction, Vernam[G]. Claim:
Vernam[G] is IND-secure if the PRG we start from is PRG-secure.

G is a good PRG ⇒ Vernam[G] is a good enc scheme (in the IND sense)
G is a bad PRG ⇐ Vernam[G] is a bad enc scheme (in the IND sense)

∃ B breaks G in the PRG sense ⇐ ∃ A breaks Vernam[G] in the IND sense

 +-------+
 | |
 A ---> | Rx | ---> B
 Breaks the higher- | | breaks the lower-level scheme
 level scheme +-------+

Given A, how will we construct B:
 B is given a long or infinite string Y
 It runs A, which expects to have an oracle that encrypts strings
 When A asks to encrypt a string X, B emulates what Vernam(G)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

17

 would do with Y being the output of the PRG.
 When A halts, outputting a bit b, B outputs the exact same bit.

Claim: Advprg G(B) = Advind Vernam(G)(A)

 Advprg G(B) = Pr[B(G(K)) ⇒ 1] - Pr[B($)⇒ 1]
 = Pr[A Enc ⇒ 1] - Pr [A Enc($) ⇒ 1]
 = Advind Vernam(G)(A)

Lecture 8 - ECS 127 - Winter 2019 - 1/25/2019

Today: o Review of PRG, reduction idea
 o Difficulties with RC4
 o More constructions: chacha20, DES, AES
Announcements:
 O Dog day: Fri, Feb 8

A PRG is a fnct G: K → L where K = {0,1}k and L = {0,1}l for l>k or l=∞

 AdvG(A) = Pr[K ⇷{0,1}k; Y ← G(K): A(Y) ⇒ 1] –
 Pr[Y ⇷ L : A(Y) ⇒ 1]

Beautiful idea of indistinguishability as answer to what is random.
Philosophical answer. Says nothing about a particular string being
random. Only addresses a collection of strings being pseudorandom.
There are other answers, particular Kolmogorov complexity.

Difficulties with RC4
 Designed 1987 Ron Rivest. Proprietary. In BSAFE toolkit.
 Reverse-engineered in 1994.
 Used in SSL 1995, WEP in 1997, TLS 1999, WPA 2004
 Bias seen back in 1995!
 Devastating attack in 2001, as used in WEP, by Fluhrer, Mantin,
Shamir
 Attacks have continued: Kenny Patterson, 2015, I believe is the
latest.

Was never the right signature!!
Highly inconvenient to use a PRG G: K → L for a Vernam cipher because

lost messages will mean lots of work, can’t “jump around

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

18

More convenient: PRF F: K × N → {0,1}∞

 or PRF F: K × N × N ’ → {0,1}l

Key, nonce, counter

ChaCha20: {0,1}256 ⨯ {0,1}128  {0,1}512
 32-bit counter
 96-bit nonce

Google has been moving to Chacha20, a cipher invented by Dan Bernstein
(2008) derivative of an earlier suggestion of his, Salsa20. (This
follows a tradition of using silly names for ciphers.)

Chacha20 has 256 bit keys, a 96 bit IV, and a 32-bit block index (to
indicate a particular block of output).

 0 1 2 3
 4 5 6 7
 8 9 10 11
 12 13 14 15

Sixteen 32-byte words

One quarter round:

Algorithm QR(a,b,c,d)
a += b; d ^= a; d <<<= 16;
c += d; b ^= c; b <<<= 12;
a += b; d ^= a; d <<<= 8;
c += d; b ^= c; b <<<= 7;

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

19

 Algorithm QR10(s)
 QR(s, 0, 4, 8,12) // col 1
 QR(s, 1, 5, 9,13) // col 2
 QR(s, 2, 6,10,14) // col 3
 QR(s, 3, 7,11,15) // col 4
 QR(s, 0, 5,10,15) // diag 1
 QR(s, 1, 6,11,12) // diag 2
 QR(s, 2, 7, 8,13) // diag 3
 QR(s, 3, 4, 9,14) // diag 4

 Algorithm chacha20(key, counter, nonce): //8, 1, 3 words
 state = constant | key | counter | nonce // 4, 8, 1, 3 words
 s = state
 for i=1 to 10 do QR10(s)
 state += s
 return serialize(state) // bytes of each word in order 4321 8765 …

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

20

Lecture 9 - ECS 127 - Winter 2019 - 1/28/2019

Today: o PRFs and PRPs; DES and AES
Announcements:
 o Dog day! Fri, Feb 8

DES

Developed in the 1970’s by IBM+NSA. Derived from Lucifer. 10 people.
HW centric. Standardized by NBS (FIPS 46) (1977). 64-bit block, 56-
bit key, Feistel network. Horst Feistel, Walter Tuchman, Don Coppersmith, Alan
Konheim, Carl Meyer, Mike Matyas, Roy Adler, Edna Grossman, Bill Notz, Lynn Smith, and
Bryant Tuckerman.

Explain how Feistel networks always induce a permutation. Can be
thought of as a technique to turn a PRF into a PRP.

Exhuastive key search. In 1977, Diffie and Hellman proposed a machine
costing an estimated $20 million which could find a DES key in a
single day. 1998: EFF machine for $250K in abou 3.5 hrs, 1856 custom
FPGSas. Now: FPGA-based machine for about 10K, few days. Fixing
this problem: Triple DES. Show.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

21

Differential cryptanlaysis: Biham-Shamir (1992). 249 chosen
plaintext/ciphertext paris. From Don Coppersmith’s paper “The Data
Encryption Standard (DES) and its strength against attacks” (1994):

As one can imagine, if he [the cryptanlalyst] starts with a known plaintext m and unknown key k and
tries to trace the encipherment through 16 rounds of DES encryption, he soon becomes hopelessly
entangled, because bits of the unknown key k are XORed with the message at the input of every S-box.
In differential cryptanalysis, however, he starts with two messages, m and m’, differing by a known
difference ∆m.
He considers the difference between the intermediate message halves: ∆m, = mi ⊕ m’i . The input to S-
box S1, for example, at round i of the encipherment of message m is mi[32,1,2,3,4,5] ⊕ ki [1,2,3,4,5,6],
and the input to S1 at round i of the encipherment of message m ’ is mi’ [32,1,2,3,4,5] ⊕ ki’ [1,2,3,4,5,6].
[So the xor of the inputs to the S-box is] mi[32,1,2,3,4,5] ⊕ mi’ [32,1,2,3,4,5]. The dependence on k has
disappeared.

Linear cryptanalysis: Matsui (1993): 243 known plaintext/ciphertext
pairs.

--
Lecture 10 - ECS 127 - Winter 2019 - 1/30/2019
--

Today: o AES
 o PRPs vs. PRFs
 o Use of PRFs
Announcements:
 o Dog day! Fri, Feb 8

Review definitions and construction
 PRG, PRF, PRP; RC4, ChaCha20, DES

“Politics through mathematics” – DES. Contrast with bridges
Langdon Winner (1980) – 3558 citations. Robert Moses.
Bernward Joerges challenged narrative (1999)

AES

History. FIPS 197. 2002, Joan Daemen and Vincent Rijmen (Belgium)
 -128/192/256, 128, SW/HW, 10-rounds, roughly 20 cpb
 -Rijndael: other finalists: Mars, RC6, Serpent, Twofish

Background on finite fields: First review finite fields: a set F with

operations +, ⋅ satisfying the usual properties: F under addition is a
group (the identity denotes 0); F\{0} under multiplication is a group

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

22

(its identity denoted 1); and multiplication distributes over
addition. Finite fields: the underlying set is finite.

A well-known theorem of algebra says that there are finite fields of

size pα for any prime p and number α ≥1; that there are no other finite
fields; and that each of these fields is unique, up to the naming of
elements. So when I describe them, you know all the finite fields. The

field with N elements is denoted FN or GF(pα). Eg, GF(2128).

Construction of the finite field GF(28). Addition = xor.
Multiplication: Fix an irreducible polynomial m of degree 8. Regard
bytes as specifying polynomials of degree at most 7. To

 m(x) = x8 + x4 + x3 + x + 1

exercise: a4 * 00 = 00
 a4 * 01 = a4
 a4 * 02 = 53

 1010 0100 = x7 + x5 + x2
 0000 0010 = x

product: x8 + x6 + x3 = x4 + x3 + x + 1 + x6 + x3
 = x6 + x4 + x + 1
 = 0101 0011
 = 53

Description of AES.

We will now manipulate this state repeatedly. It’s final value be the
ciphertext Y = AESK(X).

1. Key expansion
 Stretch the 128-bit key K into 11 strings K0 ... K10 of 128 bits
each. Details omitted here.

2. Initialize State ← X, the 128-bit word we wish to encipher.

 Sometimes we think of State as a 4 x 4 array of bytes:

 State = State[0] State[1] ... State[15] are arranged as

 col 0 col 1 col 2 col 3

 | | | |
 \|/ \|/ \|/ \|/

 row 0 -> State[0] State[4] State[8] State[12]

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

23

 row 1 -> State[1] State[5] State[9] State[13]
 row 2 -> State[2] State[6] State[10] State[14]
 row 3 -> State[3] State[7] State[11] State[15]

3. State ← State ⊕ K0

4. for i ← 1 to 10 do

 4.1 SubBytes: Replace each byte State(i) by S[State(i)]
 where S: {0,1}8 → {0,1}8 is a particular (fixed)
 permutation. (The permutation selected happens to be
 the affine translate of the inverse of the point,
 treating the point as an element of GF(28).)

 affine translate:

 1 0 0 0 1 1 1 1
 1 1 0 0 0 1 1 1
 1 1 1 0 0 0 1 1
 1 1 1 1 0 0 0 1
 1 1 1 1 1 0 0 0
 0 1 1 1 1 1 0 0
 0 0 1 1 1 1 1 0
 0 0 0 1 1 1 1 1

 4.2 ShiftRows: Left circularly shift
 row 0 by 0; row 1 by 1; row 2 by 2; row 3 by 3.

 4.3 MixColumns: if i≠10 then
 treat EACH column a0
 a1
 a2
 a3
 replace this by the column obtained by the GF(28) multiplication
by the matrix:

 b0 02 03 01 01 a0

 b1 01 02 03 01 a1
 =
 b2 01 01 02 03 a2

 b3 03 01 01 02 a3

This matrix is invertible (its determinant in the finite field is
nonzero); it’s inverse is

0E 0B 0D 09
09 0E 0B 0D

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

24

0D 09 0E 0B
0B 0D 09 0E

4.4 AddRoundKeys: State = State ⊕ Ki

5. return State

What does it DO?? Ie., what security notion do we aim for?

--

Lecture 11 - ECS 127 - Winter 2019 - 1/30/2019

--

Today: o PRPs vs. PRFs
 o Use of PRFs

Lets start off with the classical birthday bound.
Let C(q,N) = Probability that two balls land in the same bin in
the experiment of throwing q balls, uniformly and independently,
into N bins.

Prop. C(q,N) ≤ q(q-1)/2N ≤ q2/N

Let Ci be the event that the ith ball collides with one of the
previous ones. The Pr[Ci] ≤ (i-1)/N. So
C(q,N) = Pr[C1 or C2 or … or Cq]
 ≤ Pr[C1] + Pr[C2] + … + Pr]Cq]
 = 0/N + 1/N + … + (q-1)/N
 = (1 + 2 … + q-1)/N
 = q(q-1)/2N

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

25

Paying attention to the constant,
C(q,N) ≈ 0.5 when q = √ 2ln(2) √ N ≈ 1.1774 √ N

Eg: N = 365 this formula gives 22.5, say 23, which is the right answer.

Now develop
PRP/PRF switching lemma…

 AdvEprp(A) = Pr[K ↞K: AE(K,.)  1] - Pr[π ↞Perm(n): Aπ(.)  1]

 AdvEprf(A) = Pr[K ↞K: AE(K,.)  1] - Pr[ρ ↞Func(n): Aρ(.)  1]

Explain initiation.

Prop: For any adversary A that makes at most q queries to a PRP
E: K × {0,1}n →{0,1}n, we have that |AdvEprp(A) - AdvEprf(A)| ≤ q2/2n+1

 |Pr[AE(K,.)  1]- Pr[Aπ(.)  1] – (Pr[AE(K,.)  1]- Pr[Aπ(.)])  1]|

= | Pr[Aπ(.)  1] - Pr[Aρ(.)])  1]|

Game-playing argument

Game PERM or GAME RAND
Initialize f as the partial function from {0,1}n to {0,1}n that is
everywhere undefined.

Oracle E(X)
 if X ∈ Dom(f) then return f(X)

 Y ↞ {0,1}n

 if Y ∈ Ran(f) then bad ← true, Y ↞ {0,1}n \ Ran(f)
 return Y

Fundamental lemma of game playing (Bellare-Rogaway): If games G1 and
G0 are identical-until-bad, then Pr[AG11]-Pr[AG01] = Pr[G0 sets bad].

--
Lecture 12 - ECS 127 - Winter 2019 – 2/04/2019
--

Today: o PRPs vs. PRFs
 o Use of PRFs
 o WHY the PRP/PRF notions?

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

26

Review:
Not the only way to define OTP, and not the only way to define an
encryption scheme, either. One approach is to be stateful. Here is a
stateful version of our OTP, OTP*[k]:

CTR[E] where E:{0,1}k ⨯ {0,1}n → {0,1}n

 K: output a uniformly random string in {0,1}k

 EK(M): static S ← 0

 C ← M ⊕ FK(S) FK(S+1) FK(S+2) …
 C ← S || C
 S ← S + ⌈ |M|/n ⌉
 return C

 DK(C): S || C ← C

 return C ⊕ FK(S) FK(S+1) FK(S+2) …

Stateful scheme. Achieves perfect privacy and 0-advantage IND as long
as total number of block queried is less than 2n.

Informal Theorem. If E is secure as a PRP than CTR[E] is IND-secure.

Draw a picture. Replace E_K by pi. Then replace pi by rho.
Then explain that there is zero advantage in this setting. (Stateful
Scheme without wraparound)

Theorem. (say it after you have proven it)
Let A be an adversary attacking CTR[E] and achieving ind-advantage ϵ.
Suppose A asks a total of σ blocks worth of plaintext Then there
exists an adversary B, easily constructed from A, for distinguishing E
from a random permutation. It achieves advantage ϵ/2 – σ2/2n+1 and
asks σ queries and has running time about that of A.

Proof. Think of the scheme as given by a random function instead of
being given by a blockcipher.

CTR[E].Enc(.)

CTR[P].Enc(.)

A CTR[R].Enc(.)

CTR[P].Enc(0|.|)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

27

CTR[E].Enc(0|.|)

One of these differences is large.

Randomized scheme

--
Lecture 13 - ECS 127 - Winter 2019 – 2/06/2019
--
Today: o Finishing CTR mode
 o More encryption modes: CTR$, ECB, CBC and their security
 o Why PRPs?
Reminder:
 - Dog Day on Friday!
 - Questions on how much people understand. LOTS of ½ or less.
 Lots of requests for more examples; some for easier HWs; write
 bigger. Want a book (that ship has sailed).

Go over slides.

Adv^ind(A) = (a-b) + (b-c) + (c-d) + (d-e) + (e-f)
 <= Advprp(B) + s^2/2^{n+1} + 0 + s^2/2^n+1 + Advprp(C)
 Advprp(B) + Advprp(C) >= Adv^ind(A) + s^2/2^n
 Adv^(B) >= ½ Adv^ind(A) + s^2/2^{n+1}

More schemes.

CTR$[E] where E:{0,1}k ⨯ {0,1}n → {0,1}n

 K: output a uniformly random string in {0,1}k

 EK(M): S ← {0,1}n

 C ← M ⊕ FK(S) FK(S+1) FK(S+2) …
 C ← S || C
 return C

 DK(C): S || C ← C

 return C ⊕ FK(S) FK(S+1) FK(S+2) …

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

28

Probabilistic scheme: No longer matches the syntax of an encryption
scheme as we defined it: have to modify E. In this case, the syntax is

updated so that E is regarded as stateful.

Lets switch to IND$ first ..

Theorem. Let A be an adversary attacking CTR[E] and achieving ind-
advantage ϵ and asking a total of σ = ⌈ |Mi|/n ⌉. Then there exists an
adversary B for distinguishing E from a random function that achieves
advantage ϵ - σ2/2n. Adversary B is about as efficient as A.

--
Lecture 14 - ECS 127 - Winter 2019 – 2/08/2019
--
Today: Dog Day! Gabriella : Tsuki
 o Comparing security notions
 (kr-security of a blockcipher, ind$ security of an encryption
scheme, maybe CCA security and nonmalleability)

Announcements:
 o Midterm one week from today

Security notions so far:

- prg -dvantage of a PRG G
- prf-advantage of a PRF or blockcipher E
- prp-advantage of a blockcipher E
- ind-advantage of a prob or stateful enc scheme P=(K,E,D)

Why these notions?
Lots of alternatives.
Won’t let you prove something like CTR’s security.

Key recovery:

 AdvE kr(A) = Pr[K ↞K: AE(K,.)  K]

The inadequacy of KR-security

1) Not strong enough: E_K(X)=X example. Key cant recover but clearly
bad.

2) Not useful. How are you going to create something like an IND-
secure encryption scheme from this property? (In some abstract
sense it is possible, but it certainly will not be practical.)

IND-secure  KR secure
IND-insecure  KR insecure
Exists adv B breaking IND-seucrity  Exists adv A breaking KR security

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

29

Def of B^f:
 Run A, answering oracle queries with B’s oracle f.
 When A finishes, outputting a key K,
 Choose a not-yet-queries point X and ask f(x).
 If the answer Y is E_K(X), return 1, else return 0

Suppose A asks q queries. Algorithm assumes q < 2^n.

 Adv^prp(B) = Pr[B^E_K  1] - Pr[B^pi  1]
 <= 1 - (1 - 1/(2^n – q))
 <= 1/(2^n – q)

 <= 2/2^n if q<2^{n-1}

More notions for blockcipher-security

Unpredictability:

 AdvEunp(A) = Pr[K ↞K; (X,Y) ←AE(K,.): E(K,X)=Y and A made no query X]

PRP security:

 AdvEprp(A) = Pr[K ↞K: AE(K,.)  1]- Pr[π ↞Perm(n): Aπ(.)  1]

Strong PRP security:

 AdvE ±prp(A) = Pr[K ↞K: AE(K,.), Einv(K,.)  1]

 - Pr[π ↞Perm(n): Aπ(.)πinv (.)  1]

IND$ notion of an encryption scheme.
How does IT compare?

1) If we keep our current syntax. Ind$-security implies ind-
security, but not the reverse. Prove.

First party. IND$-secure  IND-secure

IND$-security means that an
 EK(.) oracle can’t be distinguished from a $ oracle.

 Which means that an EK(.) restricted to 0* queries cant be

distinguished from a $ oracle.

 Indistinguishability is transitive (with a reduction in bound
for the number of steps), so what we’re saying is that an EK(.)oracle

can’t be distinguished from a EK(0^|.|) oracle.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

30

Other direction. IND-security does not imply IND$ security.

(1) CTR[E] is IND-secure (for E a PRP) but not IND$-secure
(2) General approach, minimal assumptions: Want to say here exists

a scheme Pi that is IND-secure but not IND$ secure.But cant
exactly say that, because we don’t know that there exists a
scheme Pi that is IND-secure. Next best thing: what we show is
that if we start with a scheme Pi that is IND-secure than we
can modify it to a scheme Pi’ that remains IND-secure but is
now guaranteed to NOT be IND$-secure.

Pi=(K,E,D).
Pi=(K,E’,D’): E’(K,M): C \getsr E_K(M); return 0^100 C
 D’(K,C): C \gets M[101..]; return D_K(C)

--
Lecture 15 - ECS 127 - Winter 2019 – 2/11/2019
--
Today: o Beyond IND$ security

- Stronger aims: nonmalleability, CCA-security, AE
- Nonce-based encryption and associated data

 o Back to message authentication

Announcements:
 - Colored chalk!
 - MT on Friday.
 - Offered to distribute notes, but nobody sent me any
 - Added Monday Office Hours, 1-2.This week only: Wed Office
hours, 1-2.

Two big problems with IND/IND$-encryption

1) Usability problem of using probabilistic encryption. Traditional
schemes IV-based

2) The notions of security aren’t actually that strong. It is
misleading that the OTP is called “perfect” and that IND/IND$ is
presented at something strong. No CCA security, no
nonmalleability, no authenticity:

CCA security: An encryption scheme should remain secure even if an
adversary gets access to a decryption capability. CCA stands for
chosen-ciphertext attack. What does this really model? Traditional
answer: lunchtime attack. Better answer: the ability in protocols
built from encryption schemes to influence ciphertexts and get back
resonses from them. Example
 K RA K
 A ------------------> B
 EK(RA) EK(RB)
 <-----------------
 RB
 ----------------->

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

31

Def: AdvccaΠ(A) = Pr[A E(K,.), D(K,.)  1] - Pr[A$, D(K,.)  1]

Nonmalleability: An encryption scheme should not allow an adversary to
modify (“maul”) a ciphertext into another ciphertext whose underlying
plaintext is related to the plaintext of the original ciphertext.
We briefly discussed this in the context of a OTP, which is highly
malleable. Ex based on ASCII(0)=30, ASCII(1)=0x31, ASCII(9)=39

Authenticity: A symmetric encryption scheme should guarantee to the
recipient of a message that the message he is recovering was actually
sent by the party with whom he shares his key. (The only parties that
can make a valid ciphertext are the parties that have the underlying
key.)

Def: AdvaeΠ(A) = Pr[A E(K,.), D(K,.)  1] - Pr[A$,⊥  1]

Let’s focus on the last one, for adding it, as an adjunct to ind-cpa
security, is going to be enough to guarantee the other two properties.

Lets try to see something that doesn’t work: adding redundancy to a
standard mode like CTR or CBC.

Draw pictures – give attacks – on CTR/CBC with redundancy at end.

Another direction: Nonce-based instead of probabilism or state

1) More in line with IVs, traditional practice.
2) Less likely to be misused – effectively lowers requirement on

randomness
3) Software doesn’t have to reach into some library we don’t control

to get randomness.
4) Easier testing

Also: associated data. Give example of utility from networking
context.

Experience indicates that people don’t get the IV right: one needs
more than their being nonce, and random bits are sometimes not even
available. Important, for practice, for schemes to work with just a
nonce.

Syntax: A nonce-based symmetric encryption scheme would still a three-
tuple Π = (K,E,D), but now the encryption map E now takes in K, N, M

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

32

and, similarly D takes in K, N, C. Adjust other aspects in the

natural way, eg, the correctness condition now applying to all N.

Security notion: ind$ would be adapted in the natural way. The
adversary is given either a real encryption oracle or a random-bits
oracle. The former, on input (N,M), returns E(K,N,M) for a K chosen at

the beginning of the game. The random-bits oracle, on input N,M,
returns the appropriate number of random bits. (In most cases,
“appropriate” is no |M|.)

CBC with a nonce-IV: doesn’t work, break it, adding column above.
CTR with nonce IV. Describe it, encrypting N to make the IV.

--
Lecture 16 - ECS 127 - Winter 2019 – 2/13/2019
--
Today: o message authentication
Announcements:
 -MT on Friday
 - “The Moral Character of Cryptographic Work” 3:10 pm, 1131 Kemper

Quiz

Message authentication codes (MACs)

Go back to 2x2 grid.

Review trust model and informal goal, then syntax, treating
deterministic, stateless MACs.

Usual way to authenticate a message: accompany it with a short tag,
called the MAC. Traditionally, just 32 bits; nowadays, usually 96-128
bits. Syntax:

MAC: K × M → {0,1}t

for a deterministic MAC. (Stateful or probabilistic MACs are possible
too, and sometimes used, e.g., for reasons of improving the security
bound.)

Explain usage: sender accompanies a message M with a tag T = MAC(K,M).
Receiver gets a pair (M,T) and compute if T == MAC(K,M), rejecting M
otherwise.

Security definition

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

33

Unforgeability under an ACMA. Let F: K × M → {0,1}t be a MAC and A

an adversary. Define

AdvΠmac(A)= Pr[AF(K,.) forges]

where A forges if it outputs an (M,T) such that T = F(K,M) even though
A never asked a query M returning T. [last two words can be omitted
for deterministic MACs).

Constructing MACs

Traditional approach: the CBC MAC:

Algorithm CBC-MAC(K,M) //raw CBC MAC: no padding, |M| a multiple of n
if |M| is not a positive multiple of n then return ERROR
M1 … Mm ← M where |Mi|=n
Y ← 0n

for i ←1 to m do Y ← Y ⊕ E(K,Mi)
return Y

Show that the (raw) CBC-MAC is insecure across messages of varying
lengths: from the MAC of a one-block string you can forge the MAC of a
two-block string. Indeed you can forge infinitely many MACs. And it’s
pretty bad: given the MACs for a few modest-length messages, you can
forge a very rich set of messages.

Carter-Wegman MACs. Review definition of MAC security (unforgeability
under an ACMA), the CBC MAC, and why the CBC MAC is not secure over
variable-length messages. But it is secure (in the unforgeability
sense) on fixed length messages; it is even a PRF. (Emphasize that
the PRF notion doesn’t apply to blockciphers; and, also, that a good

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

34

PRF is always a good MAC. Perhaps make a HW problem out of the last
claim.) Also, on variable length messages, the CBC MAC is ε-almost
universal (ε-AU) for small ε. Define this concept:

Definition: a function H: K × M → {0,1}τ is ε-AU if for all distinct

M,M’∈ M, Pr[K ↞ K: HK(M)= HK(M’)] ≤ ε.

Explain the viewpoint of H comprising a family of hash functions, each
one named by a key K. We are asking that, for all distinct messages in
the message space, the probability that they collide under a randomly
chosen hash function the family is small.

Claim [Black, Rogaway 2000]: The CBC MAC is ε-AU for a small ε.
Specifically, if M and M’ are distinct messages of at most m blocks

(each block having n bits), then Pr[CBCMACπ[M] = CBCMACπ [M’]] ≤ m2/2n
(where π is randomly chosen from Perm(n)).

Now consider the following construction:

We can think of the Raw CBCMAC on top as a hash function, the result
being enciphered (with an independent key) to produce the tag (which
can, if desired, be truncated to give a shorter tag).

The above is an instance of the Carter-Wegman paradigm. That approach
is to make a MAC –or, in fact a PRF— by combining an e-AU hash
function and (say) a PRP, as by:

FK K’(M) = EK’(HK(M))

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

35

I claim that this always works:

Informal proposition (rooted in Carter-Wegman … long history after
that): If H is ε-AU and E is a secure PRP, then

FK K’(M) = EK’(HK(M)) is a secure PRF. (How good it is depends on
ε and the quality of the PRP, of course.)

Describe progression to CMAC: 1) First, combine the two blockcipher
invocations at the end into a single blockcipher call, since the
composition of random permutation is a random permutation. 2) Now
switch from keying with a separate key to pre-whitening with an n-bit
key. 3) Extend to deal with arbitrary-length input by 10* padding if
needed, and using two different keys for pre-whitening. 4) Finally,
save on underlying key material by computing pre-whitening keys as in
2E(K,0) and 4E(K,0). The result is CMAC, a NIST standard that one
might think of as the “modern” reinvention of the CBC MAC, now that we
have a rigorous definition in cryptography. Here’s a picture

--
Lecture 17 - ECS 127 - Winter 2019 – 2/15/2019
Midterm

--
Lecture 18 - ECS 127 - Winter 2019 – 2/20/2019
--
Today: o Message authentication via AU-hash functions
 O Back to AE

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

36

Announcement: Midterms graded, up online

Now there are more satisfying ways to make an ε-AU hash function. The
most widely used is polynomial arithmetic over a finite field, say
GF(2128). This is the approach used in GMAC (part of the GCM
authenticated encryption scheme). Let’s describe a simplified and
cleaned up version of GMAC. Assume we want to hash a message
M = M1 … Mm, each block an n-bit key, with, say, n=128. Regard M as
specifying a polynomial over GF(2128):

M(x) = xm + M1 xm-1 + … + Mm-1x + Mm

The family of hash function is keyed by 128-bit strings. Each key K is
used so as to hash a message M to the point M(K). Weird? We are
using the message to name the coefficients of a polynomial, and then
evaluating that polynomial at K.

I claim this approach gives an ε-AU hash family with good ε. Suppose
that M and M’ are distinct messages, each having at most m n-bit
blocks. We need to upper bound

Pr[HK(M)= HK(M)] = Pr[M(K)=M’(K)] = Pr[g(K)=0]

where g is a nonzero polynomial of degree at most m. The fundamental
theorem of algebra (at least one form of it!) says that, over any
finite field F, a nonzero polynomial of degree m has at most m zeros
(in the field). Thus

Pr[g(K)=0] ≤ m/|F| = m/2n

and we are done. Next time I’ll spell out a bit more what sort
of hash function this is, and then we’ll use all this to build
reasonably nice authenticated encryption schemes.

Authenticated encryption

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

37

Informally, an authenticated-encryption (AE) scheme is a symmetric
encryption scheme Π = (K,E,D) that achieves both privacy and

authenticity, e.g., for the nonce-based setting,

AdvΠprivA) = Pr[K ↞K: AE(K,.,.)  1] - Pr[K ↞K: A$^|.2|)  1]

AdvΠauth(A)= Pr[AE(K,.,.) forges]

are both “good”. Alternative, we can give an all-in-one
characterization

AdvΠae(A)= Pr[AE(K,.,.),D(K,.,.) → 1] - Pr[A$(K,.,.),⊥(.,.) → 1]

that is equivalent. Don’t formally show this, but provide the
intuition as to each implication.
Claim: AE-security implies ind$-cca security and Nonmalleability-cca.
But don’t formalize all these notions. Give intuition instead.

--

Review

- Definition of AE (two forms: privacy + authenticity, or all-in-
one notion)

Definition of a MAC for F: K  M {0,1}t
- Ways to achieve a MAC: raw CBC MAC (if all messages of the same

length), CMAC, WC paradigm (of which CMAC is an instance), and
GMAC (another instance)

- These approaches actually achieve more than a MAC: they achieve

a PRF F: K × M →{0,1}τ. Remind definition of a good PRF and a

good MAC on this domain

A good PRF is a good MAC:
F is PRF-secure → F is MAC-secure
F is PRF-insecure  F is MAC-insecure
∃ good B breaking PRF security  ∃ good A breaking MAC security

Definition of Bg:
 Run Af
 When A asks its oracle f a query x, answer g(x)
 When A outputs a forgery attempt (M,T),

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

38

return (g(M)=T)

AdvprfF(B) = Pr[BF→ 1] – Pr[Bπ → 1]

 ≥ AdvprfF(B) – 1/(2τ – q)

where q is the number of queries asked by B.

--
Lecture 19 - ECS 127 - Winter 2019 – 2/22/2019
--
Today: o Survey of some AE schemes
 O Cryptographic hash functions

Use slides today

Creating an AE scheme:

First: Encrypt-with-authenticity doesn’t work: describe an attack on
CBC-encryption with arbitrary unkeyed redundancy R(M) as the last
block of message.

Describe SIV. (Maybe give a history of the generic composition
discourse.) At first, omit the associated data A. Then explain its
role.

AEAD

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

39

Change the syntax one last time to include associated data: a string
that should be authenticated but not encrypted. Now encryption and
decryption will have signature

 E: K × N × A × M → C ∪ {⊥}

 D: K × N × C → M ∪ {⊥}

where we usually want M = C = A = {0,1}* (or BYTE*)

AdvΠaead(A)= Pr[AE(K,.,.,.),D(K,.,.,.) → 1] - Pr[A$(K,.,.,.),⊥ (.,.,.) → 1].

Standardized schemes

CCM:

GCM

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

40

OCB

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

41

--
Lecture 20 - ECS 127 - Winter 2019 – 2/25/2019
--
Today: O Cryptographic hash functions
 O Formalizing human ignorance

Cryptographic hash function: H: M →{0,1}n

They have no key (although, as we will see, there is some debate about
this choice). A variety of security properties discussed for these
objects, the most basic is

Collision intractability (also called collision resistance): It is
computationally infeasible to find distinct values M and M’ such that
H(M) = H(M’).

The frustration: lots of collisions exist. Indeed lots of collisions
exist, by the pigeonhole principle, even if you restrict to inputs of
length 2n, say. But the adversary, poor thing, can’t find even one.

Other commonly discussed properties:

preimage resistance (or one-way-ness)
Given a hash output Z it must be computationally infeasible to find
an input x such that Z = H(X) (MOV, p. 297)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

42

second preimage resistance

Given X1 it is computationally infeasible to find X2 ≠X1 such that
H(X2)=H(X1)

The “definitions” above aren’t yet formal. How would one make them
formal? Beware: this is a domain where informality ruled for many
years. [attempts to clean up this area: Cryptographic Hash Function
Basics [Rogaway, Shrimpton 2004]; Formalizing Human Ignorance
[Rogaway, 2006])

We will focus on collision intractability.

Uses

1. Did I get the right file? Did I download the intended file?
2. Is the cloud keeping what I told it to?
3. Commitment – I have a proof of some theorem now, I want to reveal

it later. With x the proof, would I send H(x)? No, H(R,x). Does
this really stem from collision intractability? (No)

4. Bit-coin mining. Given X, find Y s.t. H(X||Y) ends in 40 zero
bits, for example.

5. Digital signatures
6. Challenge-response protocols
7. MACs
8. Password hashing
9. Intentionally slow password hashing and, now, memory-hard,

intentionally slow password hashing (eg, scrypt, Argon2)
10. Protocol design in the ROM.
11. And lots more

How long should a hash function be so that it to begin to be feasible
for it to be collision resistance? Conventional answer: 128 bits is
probably not enough; 160 bits is probably ok; 256 bits is good.
Because of birthday bound. Simple attack:

for i from 1 do
 compute and store H(i) until you find a collision

Expect to take about 2n/2 time and n 2n/2 space.

How to achieve CR-hash function:

Earliest construction: MDC-2 – make CR hash from DES. 1987

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

43

--
Lecture 21 - ECS 127 - Winter 2019 – 2/27/2019
--
Today: O Cryptographic hash functions, cont
 O Public-key encryption

Earliest popular construction: MD4, by Ron Rivest, 1990. Beautiful
construction, the source of SHA1.
SHA1: NSA, 1993/1995

We assume that the padding entails length annotation, so that messages
of different lengths have different final blocks. Example: 10* pad
so that you are 64 bits less than a multiple of 512 bits; and then
encode the bit length of the input as the last 64 bits.

Theorem [Merkle–Damgård]

If f is a CR compression function then MD[f] is CR ⇔

∃ a related B that finds collision in f ⇐ ∃ A finds collision in MD[f]

Proof. Run A. It outputs a colliding M, M’. From this pair, we can
recover a colliding pair of inputs to f. If M and M’ have different
lengths, then the last input to f produced by processing M and M’
collide. If they have the same length and Mm ≠ Mm’, then we are done:
compute the inputs to the final compression function, and you have
your collision in f. If Mm = Mm’ but Hm ≠ Hm’ (this the chaining value

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

44

at the bottom: IV = H0, H1, …, Hm), then again we are done: compute the
inputs and you have your collision. Otherwise, Mm = Mm’ and Hm = Hm’,
so just back up to the prior block and repeat. This must terminate
because the messages are distinct. Said differently: we are just
searching for the first point where we have differing inputs into the
compression function f, and this must exist because the messages
differ but end up hashing to the same value.

Now: how to make the compression function? One approach: use a
blockcipher and, say, the Davies-Meyer construction (construction
number f5 below – but all of the following are correct, according to
the work of Rogaway-Shrimpton).

Method 5 is Davies-Meyer. But all of these methods work. Analysis by
Rogaway and Shrimpton, 2004.

Eg: SHA-1 blockcipher with 512-bit key, 160-bit input  160-bit input

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

45

All variables are unsigned 32 bits and wrap modulo 232 when adding

Algorithm SHA1(M)

h0←0x67452301; h1←0xEFCDAB89; h2←0x98BADCFE; h3←0x10325476; h4←0xC3D2E1F0

Append to M a 1 then the min # k < 512 of 0’s s.t. |M|= -64 (mod 512))
Then, for each 512 bit chunk W = w[0] w[1] … w[15] of M //|w[i]|=32

Underlying blockcipher: maps a 160-bit “plaintext” abcde and a 512 bit “key”
W=w[0]… w[15] (the message) to a new 160-bit “ciphertext” abcde.

for i←16 to 79 do w[i] ← (w[i-3]⊕ w[i-8]⊕ w[i-14]⊕ w[i-16])<<< 1
a ← h0; b ← h1; c ← h2; d ← h3; e ← h4;
for i from 0 to 79

if 0 ≤i≤19 then f ← (b and c) or ((not b) and d), k ← 0x5A827999

if 20≤i≤39 then f ← b ⊕ c ⊕ d, k ← 0x6ED9EBA1

if 40≤i≤59 then f ← (b and c) or (b and d) or (c and d), k ← 0x8F1BBCDC

if 60≤i≤79 then f ← b ⊕ c ⊕ d, k ← 0xCA62C1D6

temp ← (a <<< 5) + f + e + k + w[i]

e ← d; d ← c; c ← b <<< 30; b ← a; a ← temp

h0 ← h0 + a; h1 ← h1 + b; h2 ← h2 + c; h3 ← h3 + d; h4 ← h4 + e
return h0 || h1 || h2 || h3 || h4

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

46

Attacks: “In February 2005, an attack by Xiaoyun Wang, Yiqun Lisa Yin,
and Hongbo Yu was announced. The attacks can find collisions in the full
version of SHA-1, requiring fewer than 269 operations.” Subsequently lowered
to 269 operations. Estimated cost of finding a collision about $3 million??

SHA-3 competition. Formally announced 2015.

Below is the sponge construction from Bertoni, Daemen, Peeters, & van Assche.
It is based on a cryptographic permutation. SHA-3 = Keccak is based on this.

Permutation P below is quite wide – 1600 bits – with

https://en.wikipedia.org/wiki/Xiaoyun_Wang
https://en.wikipedia.org/w/index.php?title=Yiqun_Lisa_Yin&action=edit&redlink=1
https://en.wikipedia.org/w/index.php?title=Hongbo_Yu&action=edit&redlink=1

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

47

SHA-3 competition. Formally SHA-3 competition. Formally

--
Lecture 22 - ECS 127 - Winter 2019 – 3/01/2019
--
Today: O Public-key encryption: notion and a first construction
 O Trapdoor permutations

Syntax

 pk pk, sk
A ---------------> B

Syntax: a public-key encryption scheme is a three-tuple of algorithms
Π = (K, E, D) where

• K is a prob. algorithm that, on input k ∈ N (or 1k if you wish to

emphasize what polynomial-time” is measured in terms of k),
outputs a pair of strings (pk, sk).

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

48

• E is a prob. algorithm that, on input pk ∈ {0,1}* and M ∈ {0,1}*,

outputs a value C ↞ E(pk,M) that is either a binary string or the

symbol ⊥.

• D is a deterministic algorithm that, on input of sk ∈ {0,1}* and

C ∈ {0,1}*, outputs a value string C ← D(Sk,S) that is either a

binary string or the distinguished value ⊥.

We assume that there’s a well defined message space for each public
key: if pk is output with nonzero probability on input k, then whether
or not encrypting M with pk gives ⊥ is independent of the coins used.
And we assume correctness: if (pk, sk) is produced by running K on k,
and if C ↞ E(pk,M)is a string, then D(sk,C)=M.

Merkle Puzzle: (Ralph Merkle, submitted 1974, as a grad student)
Choose 107 random 128-bit numbers R1, …, R10^7, K1, …, K10^7 and have
Alice send to Bob, in alphabetical or random order,

Puzzle1 = Allbut40(K1) || H(K1) ⊕ ([1]128 || R1)
Puzzle2 = Allbut40 (K2) || H(K2) ⊕ ([2]128 || R2)
…
Puzzle10^7 = Allbut40 (K10^7) || H(K10^7) ⊕ ([107]128 || R10^7)

Allbut(K,t) = K[1..|K|-t]

--->
430 MBytes

Bob choose a random one of these puzzles, solves it (in 2^40) time,
and sends to Alice the number j of the puzzle she solved, a number
between 1 and 10^7. They now share j.

If it take Bob 10 minute to do his work. If an attacker needs the
same amount of time, it will take the attacker 220 times more time
(worst case), which is about 200 years (worst case; 100 years
expected).

Diffie-Hellman key exchange
First a bit of number theory background: For p prime, Zp is a field,
and Zp* is a group, the multiplicative subgroup of Zp. It is a cyclic
group, generated by a single element = <g> = Zp*

Eg: Z5 = {0,1,2,3,4}

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

49

 Z5* = {1,2,3,4}. | Zp*| = p - 1.

 1 2 3 4 Generated by 2: 20 = 1, 21 = 2, 22 = 4, 23 = 3

-------------- 24 = 1
1 | 1 2 3 4
2 | 2 4 1 3
3 | 1 2 4 2
4 | 4 3 2 1

Lagrange’s theorem: if G is a finite group with m elements and a∈G,
then am = 1.

Now for the mechanism:

a ↞[0..p-2]

 A=ga
Alice -------------> Bob
 b ↞[0..p-2]
 B=gb
 <------------

Compute Compute
DHK = Ba = gab DHK = Ab = gab  Version 1: output DHK

K = H(Secret) K = H(Secret)  Version 2: output H(DHK) for
 some cryptographic hash function H

--
Lecture 23 - ECS 127 - Winter 2019 – 3/04/2019
--
Today: O Public-key encryption

a ↞[0..p-2]

 A=ga
Alice -------------> Bob
 b ↞[0..p-2]
 B=gb
 <------------

Decisional Diffie-Hellman Assumption

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

50

Fix a finite cyclic group G = <g> of size m.
Let AdvddhG(A) = Pr[a,b ↞[0..m-2]: A(ga, gb, gab) →1] –

 Pr[a,b,c ↞[0..m-2]: A(ga, gb, gc) →1]
is “small” for any “reasonable” adversary A.

For an asymptotic definition, let the security parameter k determine
the length of a randomly selected prime p, let g be the smallest
generator for this group (alternatively, reject any prime p for which
2 is not a generator), and give the adversary g and p as input.)

Problem: DDH isn’t true for Zp* — and it’s a very strong assumption for
any group. DDH = “Day-dreamer’s hypothesis”?

Computational Diffie-Hellman Assumption
Fix a finite cyclic group G = <g> of size m.
Let AdvcdhG(A) = Pr[a,b ↞[0..m-2]; y ↞A(ga,gb): y = gab]
is “small” for any “reasonable” adversary A.

Let G=<g> be a cyclic group of order m and let H: G→{0,1}n be a
cryptographic hash function. Define
 AdvhdhG,H(A) = Pr[a,b ↞[0..m-2]: A(ga, gb, H(gab)) →1] –

 Pr[a,b ↞[0..m-2]; C ↞{0,1}n: A(ga, gb, C) →1]

In the random-oracle model (ROM), CDH is enough for Diffie-Hellman
based encryption (with hashing) to work.

Standard-model definition for an IND-CPA secure encryption scheme:

AdvprivΠ(A,k) = Pr[(pk,sk) ↞ K(k): A E(pk,⋅)(pk) → 1] –

 Pr[(pk,sk) ↞ K(k): A E(pk,0 | ⋅ |)(pk) → 1]

Asymptotic definition: for any PPT A, AdvprivΠ(A,k)is negligible.

In the ROM:

AdvprivΠ(A,k) = Pr[H↞Ω; (pk,sk) ↞ KH(k): AH, EH (pk,⋅)(pk) → 1] –

 Pr[H↞Ω; (pk,sk) ↞ KH(k): A H, EH (pk,0 | ⋅ |)(pk) → 1]

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

51

From key exchange to public-key encryption

How to go from a key-exchange scheme to an encryption scheme?
Illustrate with DH (whence the key-exchange is called ElGamal
encryption) (more or less).

Bob’s public key is gb. Alice encrypts M by choosing an ephemeral
public key ga and sending ga ||C where C ↞ E(K,M) for E the

encryption algorithm of a symmetric encryption scheme and K = H(gab)the
shared key from the key exchange. Works to transform any key exchange
plus symmetric encryption scheme into a public-key encryption scheme.

Since we’re using the cryptographic hash function in the desired form
of DH key exchange, we can just use it exclusively, as though with a
OTP/Vernam cipher built from H. This would make the ciphertext for
plaintext M and public key B = gb:
 ga || H(gab) ⊕ M Hashed Diffie-Hellman encryption

A problem: highly malleable – only achieves IND-CPA security. There
are natural approaches to do better.

-
-
- Review hybrid DH encryption, no hash

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

52

Bob’s public key is gb. Alice encrypts M by choosing an ephemeral
public key ga and sending ga ||C where C ↞ E(K,M) for E the

encryption algorithm of a symmetric encryption scheme and K = gab the
shared key from the key exchange. Works to transform any key exchange
plus symmetric encryption scheme into a public-key encryption assuming
the DDH. But serious problems: 1) weird, non-uniform key for
symmetric encryption scheme; 2) that key is actually not
indistinguishable from random bits (even in Zp): unpredictable, not
pseudorandom. DDH vs CDH. Better: K = H(gab). What assumption is
needed for H? It is not collision resistance. Explain the random-
oracle model (ROM) and its genesis.

Diffie and Hellman didn’t actually seem to be interested in encrypting
with the method described above, and it’s not clear they understood
it. What the did put forward was the idea of a trapdoor permutation.
That’s what the imagined using to encrypt:

 easy
X -------------> f(X)

 hard
 <-------------

--
Lecture 24 - ECS 127 - Winter 2019 – 3/06/2019
--
Today: O Public-key encryption with RSA and the ROM
 O Digital signatures

Def: A trapdoor permutation generator is a probabilistic algorithm G

that, on input k, outputs a pair of strings (each encoding an
algorithm) (_f,_g).
 _f describes a permutation f on some set Dom(f)
 _g describes its inverse: _g o _f = id on Dom(f)
We intend that it is easy to compute _f given its description, but
that it’s hard to compute its inverse in the absence of the string g.

Formally,

AdvtdpG(A,k) = Pr[(_f,_g) ↞ G(k); x ↞ Dom(f); x’↞ A(f,f(x)): x=x’]

We want this to be “small” for any “reasonable” adversary A. For an
asymptotic definition, G must run in PT in we insist that AdvtdpG(A,k)

be negligible for any PPT A.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

53

Now Diffie and Hellman wanted to base encryption on a trapdoor
permutation because they were interested in using the same tool for
encryption and for digital signatures, and idea they also invented:

encryption: public key = _f, secret key = _g, encrypt by
applying f to the plaintext, decrypt by applying g to the
ciphertext.

signatures: signature key = g, verification key = f, sign by
applying g to the message, verify a signature by apply f to the
signature and seeing if you get back the message.

The irony is that this is
 (1) not a 'correct' way to do encryption
 (2) not a 'correct' way to do signatures
 (3) We don't need trapdoor permutations to do signatures. Indeed we
can do them from something the ElGamal encryption method, or even from
a hash function like SHA1 or DES (as Ralph Merkle first showed).

Why is a trapdoor permutation a wrong way to do encryption?

First, it’s deterministic: encrypt the same message twice, you get the
same thing. So it can’t meet the security definitions we’ve described.

In fact, we do not use trapdoor permutations (eg, school book RSA) to
encrypt.

Nor, for that matter, do we use raw trapdoor permutation to sign.

RSA Trapdoor permutation

Generator G: Given k,

1. Compute two random k-bit primes p and q. Let N=pq.
Let φ(N)=(p-1)(q-1)= |ZN*|. Let e=3. If e is not relatively
prime to φ(N)then go to 1. Let d = 1/e mod φ(N) – that is,
choose d such that de = 1 mod φ(N).

2. The forward function f, described by (N,e), is the function
f(x) = xe mod N. It’s domain is Dom(f) = ZN*.

3. The backward direction g, described by (N,d), is the function
g(y) = yd mod N.

Check that the functions are actually inverses of one another: for x
in ZN*,
 g(f(x)) = (xe mod N)d mod N
 = xed mod N
 = x1+kφ(N) mod N
 = x xkφ(N) mod N

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

54

 = x mod N
 = x

Implicitly used mathematical facts:

1. Lagrange's theorem, a|G| = 1 (in any finite group G)
2. you can test primality
3. there are plenty of prime numbers (the prime-number density

theorem:

Meaning

4. the set ZN* forms a group; its cardinality is φ(n)= | ZN* | = (p-
1)(q-1) when N=pq is the product of distinct primes

5. finding inverses mod m is easy, and things relatively prime to m
have inverses [use Euclid’s algorithm:
for all a,b exists x,y s.t. ax + by = gcd(a,b)

 So when (a,b)=1 ax+by =gcd(a,b)
 so when (a,m)=1 ax+my = 1 (mod m).
 So ax = 1 (mod n) so a(mod m) is
 the inverse of x)

Raw RSA is not a good encryption scheme: making an encryption scheme
and a signature scheme out of it.

Simple hybrid encryption with a trapdoor permutation:

Choose a random R in Dom(f), then the ciphertext for M will be

Ef(M): R ↞ Dom(f); return <f(R), E(H(R),M)>

A method with stronger guarantees – CCA2 for the RSA trapdoor
permutation: RSA-OAEP (Bellare-Rogaway, 1994)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

55

The RSA Assumption

“RSA is one-way” or “RSA is trapdoor”

AdvrsaG(A,k) = Pr[((N,e),(N,d))↞ G(k); x ↞ZN*;

 y ← xe(mod N): A(N,e,y) → x]

In other words, you can’t get all of x from xe. But it doesn’t mean
you can’t get some of x. What can’t you get?

a) Generically, for any one-way function, you can’t get the inner-
product bit: that is, <x,r> for a random bit string r. This is a
famous result of Goldreich and Levin. If you could compute the
inner product with random values r, you could, albeit less
efficiently, invert the underlying one-way function.

The inner product bit provides a way to encrypt a bit b:
Choose x ↞ ZN*; choose r ↞{0,1}k; let the ciphertext be

C = (xe mod N, r, <x,r>). The method works for any trapdoor
permutation: C = (f(x), r, <x,r> ⊕ b) when the trapdoor
permutation generator produced (f,finv) ↞G(k).

b) For the RSA function, you can’t get the lsb. If you could compute

the lsb, you could (albeit less efficiently) invert RSA. Whence
the ciphertext can be C = (xe mod N, lsb(x) ⊕ b) for x ↞ZN*.

c) Go to the ROM

But not efficient. Each bit of plaintext encrypts to 1024 bits of
ciphertext, say. What’s done in practice.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

56

--
Lecture 25 - ECS 127 - Winter 2019 – 3/08/2019
--
Today: O A bit of review
 O Digital signatures

Quiz: trapdoor permutation;

PKCS #1 encryption

Original approach, early 1990s.
 (00 02 $$ $$ $$... $$ $$ 00 M)e mod N

where each $$ is a random nonzero byte and there are at least eight of
these. Discuss problems. Problem: no provable-security guarantee. CCA
security? Alternative, adopted as PKCS #1.5 and subsequent: OAEP
(Bellare-Rogaway, 1996)

Digital Signatures

Review trust model, goal. Then give a proper definition:

Syntax: A digital signature scheme is a tuple Π = (K, Sign, Vf) where

- K is a probabilistic algorithm that, on input of a number k,

produces a pair (pk, sk) ↞ K (k).

- Sign is a probabilistic or deterministic algorithm that, on input of
sk and M ∈{0,1}*, produces a signatures σ ← Sign(sk,M).

- Vf is a deterministic algorithm that, on input pk,M,σ, produces a
bit v ←Vf(pk,M, σ).

Correctness: If (pk, sk) ↞ K(k) and σ ← Sign(sk,M) then Vf(pk,M, σ)=1.

Diffie and Hellman’s original idea: run a trapdoor permutation
generator G to produce (f,g), which are the (pk, sk). Then

Sign(_g, M) = g(M). Vf(f,M,σ) = (f(σ)=M).

Thus, for RSA, Sign((N,d),M) = Md mod N.

But: even if you believe the RSA assumption, this completely doesn’t
work to give an unforgeable signature scheme:

- Forge M = 1 as σ=1

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

57

- Or given signatures σ1 = M1d mod N and σ2 = M2d mod N, you can
forge M1 M2 mod N using a signature of σ1 σ2 mod N because
(M1 M2)d mod N = (M1d mod N)(M2d mod N) mod N.

--
Lecture 26 - ECS 127 - Winter 2019 – 3/22/2019
--
Today: O Digital signatures
 o AKE
Announcements:

o For Wednesday, please read before class the essay “The Moral
Character of Cryptographic Work”.

O For Friday: Evals in class. Bring your laptop!
o Final March 22: Review session: Next Tuesday or Wednesday early

evening? 4-6 pm

Last time we defined signatures (review that defn), described trying
to sign with a trapdoor permutation in general and RSA in particular
(neither worked)and ended with this slide still up on the board
showing RSA PKCS #1 v.1 signatures.

Review ROM, FDH.

- PKCS #1 signature encoding

 (00 01 ff ff ff ... ff ff 00 H(M))d mod N

Discussion issues. Describe FDH (full-domain hash)

 (H(M))d mod N

o Digital signatures
- PKCS #1, v1
- FDH
- Signing from a hash function: Lamport signatures
- An important use of digital signatures: AKE by way of

signing a DH key exchange: transition to KD/AKE

First finish PKCS #1 signatures and FDH

Lamport (one-time) signatures

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

58

Secure signatures exist if OWFs do: [Naor, Yung 1989]
(UOWHF->signatures), and (OWF -> UOWHF) (Rompel 1990) (construction
of UOWHFs from one-way functions). But for Lamport signatures we start
with a cryptographic hash function, either thought of in the ROM or
just collision-resistant.

We have a message M = m1 m2 ... mt we would like to sign.
Just one message to be signed – one-time signature
Public key
pk = H(K10) H(K20) H(K30) H(K40) H(K50) H(K60)
 H(K11) H(K21) H(K31) H(K41) H(K51) H(K61)

To sign X = 011001, release K10 K21 K31 K40 K50 K61

Why is it enough so sign 128 bit strings, for example, to allow you to
sign any string? Answer: just hash first.

Can you think of a way to shorten the public key at the expense of the
signature? Answer:

PK = H(pk) // outputs as many bits as you need
SIGN_SK(M) = (pk, Sign_sk(M))

C to

Merkle signatures
Above just takes care of one signature. How to sign a sequence of
messages M1, ..., Mq ?

o Key distribution / AKE

- 2-party, shared key (smart-card to terminal)
2-party, shared PW

- 2-party, pw and f(pw)

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

59

- 3-party model
- 2-party public-key setting, bilateral authentication
- 2-party public-key setting, unilateral authentication:
- TLS 1.3. https://www.youtube.com/watch?v=grRi-aFrbSE

Basic structure: record-layer protocol followed by handshake

An important use of digital signatures: AKE by way of signing a DH key
exchange. Transition to KD/AKE.

Recall

A ga B
 --------------------->

 gb
 <---------------------

σ = H(gab) σ = H(gab)

Does nothing to ensure that A and B are any.
Relatedly, susceptible to man-in-the-middle (MiM)attack
(“grandmaster chess problem”):

A ga Z gz B
 ---------------------> ----------------->

 gb gb
<--------------------- <------------------

σ = H(gab) σ = H(gab) σ' = H(gbz) σ = H(gbz)

Authenticating a party and sharing a session key using public-key
cryptography:

 pkS pkS, skS
C Hello, C, ga S
 ------------------------>

 gb Sign(gb, transcript)
 <------------------------

σ = H(gab) σ = H(gab)

One-way authentication (server to client)
Perfect forward secrecy

https://www.youtube.com/watch?v=grRi-aFrbSE

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

60

Have to be extremely careful in the design of this sort of protocol.
Describe alternative trust models

and attacks, in particular, ones staring up new sessions:

 K K
A NA B
 ------------------->

 EK(NA) EK(NB)
 <------------------

 NB
 ------------------>

Conceptually wrong – what does privacy have to do with it?

 K K
A NA B
 ------------------->

 MACK(NA) NB
 <------------------

 MACK(NB)
 ------------------>

Still all wrong: starting up instances:

 K K K
A NA Z NA A
 -------------------> ------------------>

 MACK(NA) NB MACK(NA)
 <------------------ <------------------
 Forget this instance now

 MACK(NB)
 ------------------>

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

61

What’s the point of this, anyway, in the absence of a key being
distributed?

 K K
A A, NA B
 ------------------------>

 MACK(A,B,NA,C),C=E(K’,σ)

 <-----------------------

 MACK(C)
 ----------------------->

Give some history of

SSL/TLS
Origins: SSL, from Netscape, circa 1995
SSL v2, v3, TLS 1.0, 1.1, 1.2, 1.3

Basic structure:

Handshake protocol – negotiate parameters and keys, one-sided
authentication. Main part of the complexity. Uses PK
cryptography.
Record protocol – to actually carry the data. Uses symmetric

cryptography. AES, ChaCha.

--
Lecture 27 - ECS 127 - Winter 2019 – 3/13/2019
--
Today: O Moral Character paper

Announcements:

- Review Session 3:30 – 5:30 1003 Giedt next Wed
- Bring laptop/phone on Friday. There will be a quiz on Fri.

--
Lecture 28 - ECS 127 - Spring 2016 – 6/01/2016
--
Today:

o Garbled Circuits
o Contest winners: to be announced.
o Concluding remarks.
o Evals

Announcements:

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

62

- OH Thurs 1-3 will be my last.
- Review Session 3:30 – 5:30 1003 Giedt next Wed
- Final Mon 3:30-5:30 here

Describe how garbled circuits work, using the two-key tweakable
blockcipher abstraction. Show how to combine this with OT (oblivious
transfer) to solve 2-party MPC.

Final comments: Today is a “youth strike” at the schools. Why are you
all here? Do you even know that you’re supposed to be out on strike,
because of inaction on climate change? Why is a 16-year old depressive
the leading voice on climate inaction? Maybe you should stop worrying
about your final exam sand worry more about our fucked-up planet? Our
world is in crisis, but, operationally, it is as though almost nobody
cares. Please find the humanity within you to care.

Bye!!

Discussion section topic: the asymptotic approach
[illustrate with a PRG]

Anonymous post on piazza: what does it really mean to say that notion
X implies notion Y? (Or, for that matter, what does it mean to say
that if some object satisfies notion X then some object built from it
satisfies notion Y? The viewpoint I have tried to give: we don’t
define such things, which are just shorthand for asserting the
existence of reductions. But there is another view, that where we do
define these things.

Fixed PRG: A map G: {0,1}n → {0,1}N for constants N > n.
AdvG(A) = a real number.
A secure PRG: not formally defined.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

63

Asymptotic PRG: A map G: {0,1}* → {0,1}* such that |G(x)| = 2|x|, say.
(This is a PRG with stretch s(n)=2n. We could use other functions
instead of doubling, as long as they are length-increasing.)

AdvGprg(A) = a real-valued function of k:
AdvGprg (A,k) = Pr[AG(1k) → 1] – Pr[A$(1k) → 1]

A function ε: N →R+ is negligible if for all polynomial p there exists
a number N0 such that for k ≥ N, ε(k)≤ 1/p(k) for all k ≥ N.

An (asymptotic) PRG G is secure if
for any PPT adversary A, AdvGprg(A,k)is negligible.

PRP: A map E: K x {0,1}n → {0,1}n where K is a finite set and n is a

constant and each E(K,.) is permutation.

Asymptotic PRP: A map E: {0,1}* x {0,1}* → {0,1}* where E(K,.) is
permutation on |K|-bit strings.

AdvGprg (A,k) = Pr[AE(1k) → 1] – Pr[Aπ(1k) → 1]

An (asymptotic) PRP E is secure if
for any PPT adversary A, AdvGprp(A,k)is negligible.

Now we can make statements like:
 If there exists a secure PRG then there exists a secure PRP
or (after defining KR-security in the asymptotic sense)
 If a blockcipher is PRP-secure then it is KR-secure.
(Both of these statements are true)

There is a benefit to going this route:

- We get to define notions like “a secure blockcipher”.
- We get simple but rigorous language for describing what implies

what.
- We don’t have to concern ourselves about just how good

reductions are: polynomiality and negligibility help us see
beyond these things.

There is a cost to going this route:
- The language is harder to fully understand, with all those

alternating quantifiers
- We don’t directly get to see how strong our reductions are
- We have to kind of lie about the nature of these objects.

The last one is killer for me: it is simply not true that objects like
blockcipher are defined for every integer-valued security parameter.
It is simply not what the objects provided by cryptographic practice
are.

ECS 127 – Prof. Phillip Rogaway – Winter 2019 – Do not redistribute

64

