ECS 127 — Midterm 2 — Spring 2024

Instructions: The exam has this cover page then four more pages. Please write on the front side of pages only. Make your writing clear and dark—if we can’t read it, it’s wrong!

A reminder that you may not sit next to any partner or friend (meaning: immediately to the left, right, rear, or diagonal).

Anticipated grading (subject to change): 10 points each for problems 1–9; 40 points for problem 10, based on the number of correct responses in excess of a half.

Name: Ai Mi

Student ID: 01123581347112

Signature: Ai Mi

Seat (eg, D15): Z_{13}
1. Let \(N = 10291 = 41 \cdot 251 \) be the product of two primes. Compute \(7^{20000} \pmod{10291} \).

\[
\varphi(10291) = 40 \cdot 250 = 10000, \text{ so } 7^{10000} = \left(7^{10000}\right)^2 = 7^2 = 1 \pmod{N}
\]

2. A trapdoor permutation generator \(\mathcal{F} \) is a probabilistic algorithm that, on input of a security parameter \(k \), outputs a pair \((-f, -g) \leftarrow \mathcal{F}(k)\). What's the meaning of those underscores? What's the difference between \(-f\) and \(f\)?

\[-f \text{ is an encoding of the function } f.\]
\[-f \text{ and } -g \text{ are strings, whereas } f \text{ and } g \text{ are functions.}\]

3. Let \(N = pq \) be the product of distinct 200-digit primes, and let \(e, d \in \mathbb{Z}_N^* \) be inverses of one another in \(\mathbb{Z}_N^* \). Suppose you sign directly with RSA, signing \(M \in \mathbb{Z}_N^* \) by \(\sigma = M^d \pmod{N} \). Give an adversary \(A_{\text{Sign}(N,d)}(N,e) \) that forges \(M = 77 \).

Ask the signing oracle \(7 \), getting a response \(\sigma \).
Ask the signing oracle \(11 \), getting a response \(\sigma' \).
Forge \((77, \sigma, \sigma', \pmod{N}) \).

Hint: ask for the signatures of two messages, then output your forgery.

4. The computational Diffie-Hellman assumption (CDH) says that doing what is hard?

Given random group elements \(g^a \) and \(g^b \), it is hard to compute \(g^{ab} \).
5. Suppose you encrypt with a substitution cipher $\Sigma = (\mathcal{K}, \mathcal{E}, \mathcal{D})$. Key generator \mathcal{K} outputs the description of a random permutation $\pi \in \text{Perm}(8)$ specifies a permutation on bytes. The encryption of an n-byte plaintext $M_1 \cdots M_n$ is $\mathcal{E}_\pi(M_1 \cdots M_n) = \pi(M_1) \cdots \pi(M_n)$. Now ind-break Σ: Specify an adversary \mathcal{A} whose ind-advantage

$$\text{Adv}^{\text{ind}}_\Sigma(\mathcal{A}) = \Pr[\pi \leftarrow \text{Perm}(8) : \mathcal{A}^{\mathcal{E}_\pi^{(1)}} \Rightarrow 1] - \Pr[\pi \leftarrow \text{Perm}(8) : \mathcal{A}^{\mathcal{E}_\pi^{(0)}} \Rightarrow 1]$$

is large.

Ask oracle for the encryption of AB for any distinct bytes A and B (like $A = \text{00}$, $B = \text{FF}$). Let XY be the response, where $|X| = |Y| = 8$. If $X \neq Y$ then return 1, else return 0.

Simple adversary. Don’t ask more than two queries.

6. Recall the Merkle-Damgård construction for making a cryptographic hash function h from a compression function h. Draw a picture that shows what happens when you hash a 100-byte message $M = M_1M_2\cdots M_{100}$. Assume that h that maps 64 bytes to 32 bytes. Assume that length annotation (required for Merkle-Damgård) is done by encoding $|M|$ in the last 8 bytes.

7. Define a blockcipher $E : \{0,1\}^{128} \times \{0,1\}^{128} \rightarrow \{0,1\}^{128}$ (make sure it is a blockcipher) that is perfectly secure (prp-advantage of 0) if the adversary asks one query, but is highly insecure (prp-advantage near 1) if the adversary asks two queries.

$$E_K(X) = K \oplus X$$

Note: $= X$ is insecure with one query; $= K$ is not a blockcipher.
8. Let's use Lamport's scheme (lecture 9F) for a one-time, hash-based signature. Assume a hash function H that returns 32 bytes. Suppose the message you will sign is a one byte $M = m_1m_2m_3m_4m_5m_6m_7m_8$. The public key and secret key will be

$$pk = \begin{bmatrix} H(A_1) & H(A_2) & \cdots & H(A_8) \\ H(B_1) & H(B_2) & \cdots & H(B_8) \end{bmatrix}$$

where $A_1, \ldots, A_8 \leftarrow \{0,1\}^{32}, B_1, \ldots, B_8 \leftarrow \{0,1\}^{32}$, say.

$$sk = \begin{bmatrix} A_1, \ldots, A_8 \\ B_1, \ldots, B_8 \end{bmatrix}$$

The signature of $M = 00001111$ will be

$$sk = A_1A_2A_3A_4B_5B_6B_7B_8$$

9. Cross out and fix (reword) anything that's particularly problematic in the following. Then explain why you made the adjustment you did.

A collision-resistant hash function (also called a collision-intractable hash function) is a function $H : \{0,1\}^* \rightarrow \{0,1\}^n$ with

- nobody knows
- the property that there are no strings M and M' in the domain of H or known such that $M \neq M'$ yet $H(M) = H(M')$.

Explanation: By the PHP, lots of collisions exist — it's just that we don't know any. Us dumb humans, that is.
10. **Darken the box** if the statement is true. Leave it alone otherwise.

1) □ A symmetric encryption scheme Π that is ind$\$-secure will be ind-secure.

2) □ A symmetric encryption scheme Π that is ind-secure will be ind$\$-secure.

3) □ A function $F: K \times \{0,1\}^* \to \{0,1\}^{128}$ that is prf-secure will be mac-secure.

4) □ We know how to make a practical, provably prp-secure blockcipher.

5) □ We know how to make a practical, provably 2^{-128}-AU hash function.

6) □ OCB encryption is nonmalleable.

7) □ An encryption scheme with a key space smaller than its message space can achieve perfect ind-security.

8) □ A MAC can be secure despite being stateless and deterministic.

9) □ AEAD encryption $C = E(K, N, A, M)$ typically produces a ciphertext whose length increases with the length of A, the associated data.

10) □ A Carter-Wegman MAC can authenticate a long message with only one blockcipher call.

11) □ A prp-secure blockcipher E might have $E_K(K) = K$.

12) □ If an encryption scheme’s key space is smaller than its message space, it can’t achieve perfect privacy. **NOT GRADED BECAUSE ACCIDENTAL REPEITION (OF #7)**

13) □ ChaCha20 is an early AEAD scheme.

14) □ There is a message M, quite long, whose CBC MAC is always a string of zeros.

15) □ Let $E: K \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher. For any $K \in K$, the function $X \mapsto E_K(X)$ is permutation, while the function $X \mapsto X \oplus E_K(X)$ is usually not.

16) □ A homework showed that, experimentally, RC4 seems highly secure as a PRG.

17) □ Adversary A queries a random function $f: \{0,1\}^{128}$ at 2^{40} different points. The answers returned will probably be distinct (different from one another).

18) □ If Alice wants to go on a date with Bob, she should ignore what we did in ECS 127 and just ask him out. **STUDENTS VOTED 100 % I MOST DEFINITELY VOTE %, TOO.**

Have a nice life!