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Problem Set 1 Solutions

Problem 1. Alice has a pretty penny. Unfortunately, it might not be a fair penny: it might, when flipped, land

heads with some probability p ̸= 0.5. Alice wants to generate a uniform random bit b: the bit should be 1 with

probability 0.5 and zero with probability 0.5. Describe a strategy Alice can use to achieve the result she wants using

her possibly-biased coin.

We assume that coin flips are all independent of one another and that 0 < p < 1 (absent these assumptions,
a solution is impossible). Alice can then flip the coin until she sees the first time that it goes from an
outcome of heads to an outcome of tails or, conversely, it goes from an outcome of tails to an outcome
of heads. (With probability 1, one of these events will eventually occur, since 0 < p < 1.) In the first
case she outputs “1” and in the second case she outputs “0”. By independence, both occur with equal
probability.

Problem 2. Alice and Bob have an infinite pile of pennies. They take turns placing their pennies on a perfectly

round table, beginning with Alice. A penny may be placed anywhere on the table so long as all of the penny fits

fully on top of the table and no part of the penny is on top of any other penny. Pennies must be placed flat on

their heads or tails side. A party loses if he has nowhere to put his penny. Show that Alice can always win. (You

might need some natural assumption for this to be true. If so, state it.)

We must assume that the table’s diameter exceeds the penny’s diameter; otherwise, contrary to the
problem statement, Alice loses. Here’s Alice’s strategy. She places her penny exactly in the center of the
table. Then, whenever Bob places a penny on the table, Alice places one at the “opposite” location—
meaning that the center of the penny is on the line connecting the center of Bob’s newly placed penny
and the center of the table, the same distance away. That location will always be unoccupied because
we maintain the invariant that, following each Alice move, any position on the table is unoccupied if and
only iff its a “opposite” position is unoccupied. Since Alice always has a move to make and the table
must eventually hold no more pennies, she will win.

Problem 3. Alice might like to go on a date with Bob. Bob might like to go on a date with Alice. But nobody

asks the other out because they’re too embarrassed to express interest in case the other is not interested.

Alice and Bob aim to solve this problem by designing a protocol (an algorithm) in which each learns of the other’s

interest if both are interested. Said differently, Alice has a private bit a ∈ {0, 1} and Bob has a private bit

b ∈ {0, 1}, and we seek a method wherein Alice and Bob can interact with one another and, at the end of the

interaction, each will know a ∧ b, but nothing more. If a = b = 1 they each learn this fact; if a = 0, Alice learns

nothing of b; if b = 0, Bob learns nothing of a.

For your solution, use only simple, physical objects you might find around your home. Assume Alice and Bob are

basically honest and cooperative, but don’t assume either will do what you say if left unobserved.

There are numerous solutions. Here are three. Open your eyes. Alice and Bob agree to the following:
“We sit across one another at the table, eyes closed. Now, on the count of three, open your eyes iff you
want to go on a date.” Make a date. Alice and Bob agree to the following: “If you’re interested to
go on a date, go to the MU coffee shop Friday at 5pm. Otherwise, stay away from there.” Flashlight.
Alice and Bob sit across one another at a table. Each has a D-size battery. Alice takes an old-style
flashlight, unscrews the top, and then, under the table, puts in her battery: negative-side down if a = 1,
positive side-down if a = 0. She hands the flashlight to Bob, who, beneath the table, inserts his battery:
negative-side down if b = 1, positive side-down if b = 0. He screws on the top of the flashlight. In view
of Alice, he flips the switch. If it fails to light up, he unscrews the top and, beneath the table, dumps
out the batteries.
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Problem 4. An n-bit permutation P is a one-to-one and onto function with domain and range {0, 1}n. The set

of all n-bit permutations is denoted Perm(n). By a random n-bit permutation I mean a function drawn uniformly

from Perm(n).

An n-bit cycle C is an n-bit permutation for which 0n, C(0n), C(C(0n)), . . . , C2n−1(0n) are distinct. The set of

n-bit cycles is denoted Cycl(n). By a random n-bit cycle I mean function drawn uniformly from Cycl(n).

(As a suggested warm-up, draw some pictures illustrative of random permutations and random cycles; figure out

why, for a random cycle, C2n(0n) = 0n; and compute |Perm(n)| and |Cycl(n)|.)

Finally, the question: Fix n ≥ 1. Now show how to convert a random permutation P ∈ Perm(n) into a random

cycle C ∈ Cycl(n). That is, provide a (stateless, deterministic) algorithm to compute C(x) that makes (efficient,

black-box) use of permutations P (y) and P−1(z). Explain why C is a cycle, and why it is uniformly random in

Cycl(n) as long as P is uniformly random in Perm(n).

Fix n. Let Inc : {0, 1}n → {0, 1}n be an arbitrary cycle on {0, 1}n, say the function that treats its n-bit
input as a number, adds 1 modulo 2n, and then treats the result as an n-bit number. Treating numbers
as n-bit strings, 0 → 1 → 2 → · · · → 2n − 1 → 0 is the cycle named by Inc. We now just rename each
point x on this cycle by P (x). Formally, C(x) = P−1(Inc(P (x))). Of course you can do it the other
way around, too: C(x) = P (Inc(P−1(x))). Clearly this provides a unifom random cycle if our renaming
function P is uniformly random.


