Problem Set 2 Solutions

Problem 5. Alice shuffles a deck of 52 cards and deals it out to herself and Bob so that each gets half of the cards. Alice now wants to send a secret message M to Bob. Eavesdropper Eve is watching and sees the transmissions.
Part A. Suppose Alice's message $M \in\{0,1\}^{48}$ is a string of 48 bits. Describe how Alice can communicate M to Bob in a way that achieves perfect privacy.
There are $N=\binom{52}{26} \approx 2^{48.82}$ ways to deal out the cards. Arbitrarily number the hands Alice might hold $0,1, \ldots, N-1$. Alice and Bob both know Alice's hand, so regard it as a shared key $K \in \mathbb{Z}_{N}$. Now regard the 48 -bit string M that Alice wishes to send as a number $M \in \mathbb{Z}_{N}$. (We can do this since $0 \leq M<2^{48}<N$.) Alice encrypts M to the ciphertext $C=(M+K) \bmod N$. The distribution on C is then uniform over \mathbb{Z}_{N} because K is uniform on this set.

Part B. Now suppose Alice's message $M \in\{0,1\}^{49}$ is 49 bits. Prove that there does not exist a protocol that allows Alice to communicate M to Bob in a way that achieves perfect privacy.
Now we have 2^{49} possible messages but $N=\binom{52}{26}<2^{49}$ possible keys. Choose an arbitrary key and let C be the ciphertext of $M=0^{49}$ under this key. Perfect privacy means that the distribution of this ciphertext must be independent of the value of the plaintext. But when we try to decrypt C under every possible key, there are at most N possible plaintexts, so some plaintext M^{\prime} never yields C as the ciphertext. In other words, the adversary Eve does learn something from the ciphertext C : she learns that the plaintext of C is not M^{\prime}. This violates perfect privacy.

