
ECS 127: Cryptography Handout p3-soln
UC Davis — Phillip Rogaway 18 Apr 2024

Problem Set 3 Solutions

Problem 6. Alice wants to deal a one-byte secret to shareholders 1, 2, and 3 such that any two of them can

reconstruct the secret, but no single player knows anything about it. She decides to use Shamir secret sharing over

the smallest prime field that will work for this situation. She represents bytes and points in this field in the natural

way. Players 1 and 2 end up with shares of 209 = 0xD1 and 34 = 0x22, respectively. What secret was shared?

What was player 3’s share?

The smallest prime larger than 256 is 257, so we will work in the field Z257. Since the problem asks for a
2-out-of-3 secret sharing, the sharing algorithm would be f(x) = a0+a1x mod 257 where a0 ∈ Z256 is the
shared secret and a1 ∈ Z257 is a random parameter. Then a0 + a1 = 209 mod 257, while a0 + 2a1 = 34
mod 257. Subtracting the first equation from the second (doing everything mod 257) gives a1 = 82.
Plugging this back into the first equation gives a0 = 127 = 0x7F. Now knowing the polynomial chosen
to have been f(x) = 127 + 82x gives f(3), the share for player 3, of 116 = 0x74.

Problem 7. Suppose you’d like to k-out-of-n secret share a 5-gigabyte DVD M among n ≥ 3 shareholders,

obtaining shares S1, . . . , Sn. Obviously it would be highly inefficient to regard M as a point from a (truly gigantic)

finite field. Describe two simpler/faster approaches, and argue informally that they should work. The first should

involve use of the field F28 and no complexity assumptions. The second should involve using Shamir’s secret-

sharing scheme on no more than 16 bytes.

Part 1. Fix the access structure (the numbers k and n). Let (Share,Recover) denote Shamir’s se-
cret sharing scheme for this access structure and over F28 . Build from this a secret-sharing scheme
(Share1,Recover1) with message space Byte+ as follows: to compute Share(M1 · · ·Mm) with each Mi

a byte, let (S1
i , · · · , Y n

i )↞Share(Mi) for each i ∈ [1..m]; then output (S1
1 · · ·S1

m, · · · , Sn
1 · · ·Sn

m). That
is, independently share each of the m bytes, and then concatenate corresponding bytes to make shares.
Similarly, let Recover1(S1

1 · · ·S1
m, . . . , Sn

1 · · ·Sn
m) be Recover(S1

1 · · ·S1
m) · · ·Recover(Sn

1 · · ·Sn
m).

To verify that this works, we need to check correctness and privacy. Correctness means that authorized
sets of players holding good shares will recover what was previously shared out. This is so because they
correctly recover each of the m bytes. Privacy means that unauthorized subsets of players get shares
uncorrelated to what was shared out, apart from its length. This follows because each byte of what’s
recovered is uncorrelated to the corresponding byte that was shared out by Share (by the privacy of
(Share,Recover)), and uncorrelated to every other byte (by Share1’s definition).

Part 2. Same setup and nomenclature as above, fixing k, n. Now assume we have a good PRG G :
Byte16 → Byte∞ (that is, an object like RC4, but with better security). We construct a secret-sharing
scheme (Share2,Recover2) as follows. Algorithm Share2(M) generates a random 16-byte string K and
computes both C ← M ⊕ G(K) and (S1, . . . , Sn) ← Share1(K). It returns the shares (S1C, . . . , SnC).
Algorithm Recover2(S′

1, . . . , S
′
n) parses each provided S′

i into SiCi (remember some shares may not be
provided); outputs fail if the Ci values are not all the same value C; runs Recover(S1, . . . , Sn) to get a
value K; and outputs C ⊕G(K) as the recovered message.

We must again argue correctness and privacy. The first is again trivial. For the second, note that we do
not achieve “perfect” privacy: shares are information-theoretically correlated to the original secret. So we
would need a new, computational notion of privacy for a secret sharing scheme. It would say, roughly, that
reasonable adversaries can’t distinguish unauthorized collections of shares corresponding to two different,
equal-length messages. The PRG property of G should make this highly plausible: it tells us that C
itself is going to be pseudorandom (as the xor of a pseudorandom string and some uncorrelated string),
and, to the adversary, you are supplementing this by something that has no correlation (information-
theoretically) to the message or PRG’s key.



2 ECS 127 Handout p3-soln: Problem Set 3 Solutions

Problem 8.1 The RC4 algorithm maps a key K ∈ Bytek to an infinite string RC4(K), where k ∈
[1..256]. Investigate empirically the probability pi that the second byte of RC4 output is i ∈ {0, . . . , 9}
(written as a byte). For concreteness, assume a key length of k = 16 bytes. Now describe a simple
adversary to distinguish RC4 output from truly random bits. Estimate your adversary’s advantage,
defined as the probability that it outputs 1 when given truly random bits minus the probability that it
outputs 1 when given pseudorandom (RC4-generated) bits.

We implemented the RC4 algorithm and ran it with independently sampled 16-byte keys. Specifically,
our program makes in total 225 trials and counts the occurrences of the events that the second output
byte equals to any of {0, . . . , 9}. Finally, the program outputs the computed frequency for each of the 10
outcomes. The following is from a sample output:

frequency for byte 0: 0.007838
frequency for byte 1: 0.003847
frequency for byte 2: 0.003855
frequency for byte 3: 0.003883
frequency for byte 4: 0.003864
frequency for byte 5: 0.003871
frequency for byte 6: 0.003864
frequency for byte 7: 0.003900
frequency for byte 8: 0.003899
frequency for byte 9: 0.003873

From the above result, it would appear that the second output byte of RC4 is strongly biased towards 0:
p0 is approximately 1/128 = 0.0078125, which is twice the anticipated probability. This suggests a
simple adversary for distinguishing RC4 output from truly random bits: adversary A, given a challenge
string x = x1x2 · · · having two or more bytes, would just read its second byte x2 and then return 1 if
and only if it’s 0:

A(x1x2 · · · ) Each xi is a byte

If x2 = 0x00 then return 1
else return 0

From our empirical study, we anticipate that ifA is given real RC4 output, it will output 1 with probability
about 1/128; while if it is given a truly random string, it will output 1 with probability exactly 1/256.
Thus we expect that Adv(A) ≈ 1/256 ≈= 0.0039.

1This problem requires a little programming, and it requires you to lookup a definition of RC4.


