## Problem Set 4 Solutions

Problem 9. In class we defined the multiquery PRG advantage for a PRG $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ by way of

$$
\operatorname{Adv}_{G}^{\operatorname{prg} *}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}^{\mathrm{G}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\S} \Rightarrow 1\right]
$$

where the first oracle answers any query by $G(S)$, for a freshly chosen $S \leftrightarrow\{0,1\}^{\ell}$, and the second oracle answers any query by returning a freshly chosen $R \longleftarrow\{0,1\}^{L}$. Consider $G=R C 4$, thought of as a map from 16 bytes to two (or more) bytes.

Assume, as your experiments for Prob. 8 suggested, that the second byte of RC4 output is zero with probability $1 / 128$. Design an adversary that breaks the security of RC4 with prg* advantage at least 0.99 . For your analysis, you can use the following tool:
Hoeffding's inequality. (See the Wikipedia entry with this name for more information.)
Let $X_{1}, \ldots, X_{n}$ be independent and identically distributed random variables, each in $\{0,1\}$ and each taking on the value 1 with probability $p$. Let $\bar{X}=\frac{1}{n} \sum X_{i}$ be the "empirical mean" of the observations, which has the expected value of $\mathrm{E}[\bar{X}]=p$. Then for all real numbers $t \geq 0$,

$$
\operatorname{Pr}[|\bar{X}-p| \geq t] \leq 2 e^{-2 n t^{2}}
$$

Our adversary $\mathcal{A}$ will request $n$ output samples of two bytes each, for a value $n$ that we will determine from the analysis below. It will then compute the fraction of the time $\bar{X}$ that the second byte was 0 . We are expecting this value either to be close to $1 / 128=4 / 512$ or close to $1 / 256=2 / 256$, so let's define $\mathcal{A}$ to output 1 if it observes $\bar{X} \geq 3 / 256$ and output 0 if it observes $\bar{X}<3 / 256$.
Let $t=1 / 513$. If $\bar{X}$ is in $[1 / 128-t, 1 / 128+t]$ then $A$ will output 1 . If $\bar{X}$ is in $[1 / 256-t, 1 / 256+t]$ then $A$ will output 0 . If $\bar{X}$ is in neither range, we don't care what it outputs.
Alternatively and more simply, we can have $A$ answer 1 if $\bar{X}>3 / 512$, and 0 otherwise, as this simplified algorithm complies with the mandated behavior above.
We now bound $\mathcal{A}$ 's advantage as a function of $n$. Let $X$ be the RV that is $\mathcal{A}$ 's measurement when it speaks to the RC4 oracle, and let $Y$ be the RV that is $\mathcal{A}$ 's measurement when it speaks to the random-bits oracle. Then

$$
\begin{aligned}
\operatorname{Adv}_{\mathrm{RC} 4}^{\mathrm{prg}(\mathcal{A})} & =\operatorname{Pr}\left[\mathcal{A}^{\mathrm{RC} 4(\cdot)} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\$(\cdot)} \Rightarrow 1\right] \\
& =1-\operatorname{Pr}\left[\mathcal{A}^{\mathrm{RC} 4(\cdot)} \Rightarrow 0\right]-\operatorname{Pr}\left[\mathcal{A}^{\$(\cdot)} \Rightarrow 1\right] \\
& \geq 1-\operatorname{Pr}\left[\left|X-\frac{1}{128}\right| \geq \frac{1}{513}\right]-\operatorname{Pr}\left[\left|Y-\frac{1}{256}\right| \geq \frac{1}{513}\right] \\
& \geq 1-4 e^{-2 n(1 / 513)^{2}}
\end{aligned}
$$

We seek adversarial advantage of at least $1-1 / 100$, so we should select $n$ large enough that

$$
4 e^{-2 n(1 / 513)^{2}} \leq \frac{1}{100}
$$

or, solving for $n$, it suffices to have

$$
n \geq \frac{513^{2} \cdot \ln 400}{2}
$$

Google's calculator tells me that $n=800,000$ suffices (rounding up to a nice round value). This is pretty striking: fewer than a million samples suffice for superb accuracy as to whether you're speaking to an RC4 generator or a generator of truly random bits.
The number $n$ can be substantially lowered by switching to an appropriate (one-sided) Chernoff bound, which works better here. I did that in discussion section, ending up with $n \approx 21,000$.

Problem 10. For this problem you will prove that PRG-security (the adversary is given one sample) is essentially equivalent to $P R G^{*}$-security (where the adversary is given as many samples as it likes). More specifically:
(a) Let adversary $\mathcal{A}$ have advantage $\delta=\operatorname{Adv}_{G}^{\operatorname{prg}}(\mathcal{A})$ in attacking $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$. Exhibit an adversary $\mathcal{B}$ of comparable efficiency that has "good" $\operatorname{Adv}_{G}^{\operatorname{prg} *}(\mathcal{B})$ advantage.
This part is easy: $\mathcal{B}$ asks its oracle a single query, getting a response $Y$; then $\mathcal{B}$ runs $\mathcal{A}(Y)$, outputting what $\mathcal{A}$ does. Adversary $\mathcal{B}$ 's behavior precisely emulates the defining behavior for $\mathcal{A}$ 's, whence $\operatorname{Adv}_{G}^{\text {prg* }}(\mathcal{B})=\delta$. Of course $\mathcal{B}$ is efficient, asking a single query and running in approximately $\mathcal{A}$ 's time
(b) Let adversary $\mathcal{B}$ have advantage $\delta^{*}=\operatorname{Adv}_{G}^{\operatorname{prg*}}(\mathcal{B})$ in attacking $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$. Exhibit an adversary $\mathcal{A}$ of comparable efficiency that has "good" $\operatorname{Adv}_{G}^{\operatorname{prg}}(\mathcal{A})$ advantage.
The reduction is a hybrid argument. Let $q$ be the maximum number of oracle queries asked by $\mathcal{B}$. Without loss of generality, assume that $\mathcal{B}$ always asks exactly $q$ queries. (This entails no loss of generality insofar as $\mathcal{B}$ can always ask extra questions and ignore the answers.) We construct an adversary $\mathcal{A}$, approximately as efficient as $\mathcal{B}$, that, on input $Y$, gets advantage $\operatorname{Adv}_{G}^{\mathrm{prg}}(\mathcal{A})=\delta^{*} / q$. Define:

```
algorithm }\mathcal{A}(Y
j<[1..q]
for }i\leftarrow1\mathrm{ to j-1 do }\mp@subsup{S}{i\leftarrow{0,1}}{\ell},\mp@subsup{Y}{i}{}\leftarrowG(\mp@subsup{S}{i}{}
Sj<<Y
for }i\leftarrowj+1\mathrm{ to }q\mathrm{ do }\mp@subsup{Y}{i\leftarrow{0,1\mp@subsup{}}{}{L}}{
Run }\mp@subsup{\mathcal{B}}{}{\mathcal{O}}\mathrm{ , answering }\mathcal{B}\mathrm{ 's }i\mathrm{ th query with }\mp@subsup{Y}{i}{}\mathrm{ and letting b be the }\mathcal{B}\mathrm{ 's final output
return b
```

We observe that when $j=1$ and $Y_{\Vdash G}(S)$ we are running $\mathcal{B}$ in an environment that corresponds to the experiment we denoted G (the first experiment in the definition of the adversary's advantage); and when $j=q$ and $Y \leftrightarrows\{0,1\}^{L}$ we are running $\mathcal{B}$ in an environment that corresponds to the experiment we denoted $\$$ (the second experiment in the definition of the adversary's advantage). By hybrid argument $\operatorname{Adv}_{G}^{\operatorname{prg}}(\mathcal{A})=\delta / q$.

Problem 11. On March 28 colleague Ross Anderson https://www.cl.cam.ac.uk/~rja14/ died at his home in Cambridge, England. Read one or more papers by Anderson, and write a couple of pages in summary or analysis.

