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Problem Set 4 Solutions

Problem 9. In class we defined the multiquery PRG advantage for a PRG G : {0, 1}ℓ → {0, 1}L by
way of

Advprg∗
G (A) = Pr[AG ⇒ 1]− Pr[A$ ⇒ 1]

where the first oracle answers any query by G(S), for a freshly chosen S↞{0, 1}ℓ, and the second oracle

answers any query by returning a freshly chosen R↞{0, 1}L. Consider G = RC4, thought of as a map

from 16 bytes to two (or more) bytes.

Assume, as your experiments for Prob. 8 suggested, that the second byte of RC4 output is zero with

probability 1/128. Design an adversary that breaks the security of RC4 with prg∗ advantage at least 0.99.

For your analysis, you can use the following tool:

Hoeffding’s inequality. (See the Wikipedia entry with this name for more information.)
Let X1, . . . , Xn be independent and identically distributed random variables, each in {0, 1} and each taking
on the value 1 with probability p. Let X = 1

n

∑
Xi be the “empirical mean” of the observations, which

has the expected value of E[X] = p. Then for all real numbers t ≥ 0,

Pr[
∣∣X − p

∣∣ ≥ t] ≤ 2e−2nt2 .

Our adversary A will request n output samples of two bytes each, for a value n that we will
determine from the analysis below. It will then compute the fraction of the time X that the
second byte was 0. We are expecting this value either to be close to 1/128 = 4/512 or close to
1/256 = 2/256, so let’s define A to output 1 if it observes X ≥ 3/256 and output 0 if it observes
X < 3/256.

Let t = 1/513. If X is in [1/128−t, 1/128+t] then A will output 1. If X is in [1/256−t, 1/256+t]
then A will output 0. If X is in neither range, we don’t care what it outputs.

Alternatively and more simply, we can have A answer 1 if X > 3/512, and 0 otherwise, as this
simplified algorithm complies with the mandated behavior above.

We now bound A’s advantage as a function of n. Let X be the RV that is A’s measurement
when it speaks to the RC4 oracle, and let Y be the RV that is A’s measurement when it speaks
to the random-bits oracle. Then

Advprg∗
RC4(A) = Pr

[
ARC4(·) ⇒ 1

]
− Pr

[
A$(·) ⇒ 1

]
= 1− Pr

[
ARC4(·) ⇒ 0

]
− Pr

[
A$(·) ⇒ 1

]
≥ 1− Pr

[∣∣∣∣X − 1

128

∣∣∣∣ ≥ 1

513

]
− Pr

[∣∣∣∣Y − 1

256

∣∣∣∣ ≥ 1

513

]
≥ 1− 4e−2n(1/513)2

We seek adversarial advantage of at least 1− 1/100, so we should select n large enough that

4e−2n(1/513)2 ≤ 1

100
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or, solving for n, it suffices to have

n ≥ 5132 · ln 400
2

.

Google’s calculator tells me that n = 800, 000 suffices (rounding up to a nice round value). This
is pretty striking: fewer than a million samples suffice for superb accuracy as to whether you’re
speaking to an RC4 generator or a generator of truly random bits.

The number n can be substantially lowered by switching to an appropriate (one-sided) Chernoff
bound, which works better here. I did that in discussion section, ending up with n ≈ 21, 000.

Problem 10. For this problem you will prove that PRG-security (the adversary is given one sample) is

essentially equivalent to PRG*-security (where the adversary is given as many samples as it likes). More

specifically:

(a) Let adversary A have advantage δ = Advprg
G (A) in attacking G : {0, 1}ℓ → {0, 1}L. Exhibit an

adversary B of comparable efficiency that has “good” Advprg∗
G (B) advantage.

This part is easy: B asks its oracle a single query, getting a response Y ; then B runs A(Y ),
outputting what A does. Adversary B’s behavior precisely emulates the defining behavior for
A’s, whence Advprg∗

G (B) = δ. Of course B is efficient, asking a single query and running in
approximately A’s time

(b) Let adversary B have advantage δ∗ = Advprg∗
G (B) in attacking G : {0, 1}ℓ → {0, 1}L. Exhibit an

adversary A of comparable efficiency that has “good” Advprg
G (A) advantage.

The reduction is a hybrid argument. Let q be the maximum number of oracle queries asked
by B. Without loss of generality, assume that B always asks exactly q queries. (This entails
no loss of generality insofar as B can always ask extra questions and ignore the answers.) We
construct an adversary A, approximately as efficient as B, that, on input Y , gets advantage
Advprg

G (A) = δ∗/q. Define:

algorithm A(Y )
j↞[1..q]
for i← 1 to j − 1 do Si↞{0, 1}ℓ, Yi ← G(Si)
Sj↞Y
for i← j + 1 to q do Yi↞{0, 1}L
Run BO, answering B’s ith query with Yi and letting b be the B’s final output
return b

We observe that when j = 1 and Y↞G(S) we are running B in an environment that corresponds
to the experiment we denoted G (the first experiment in the definition of the adversary’s advan-
tage); and when j = q and Y↞{0, 1}L we are running B in an environment that corresponds
to the experiment we denoted $ (the second experiment in the definition of the adversary’s
advantage). By hybrid argument Advprg

G (A) = δ/q.

Problem 11. On March 28 colleague Ross Anderson https: // www. cl. cam. ac. uk/ ~ rja14/ died

at his home in Cambridge, England. Read one or more papers by Anderson, and write a couple of pages

in summary or analysis.

https://www.cl.cam.ac.uk/~rja14/

