Problem Set 4 Solutions

Problem 9. In class we defined the multiquery PRG advantage for a PRG $G: \{0,1\}^{\ell} \to \{0,1\}^{L}$ by way of

$$\operatorname{Adv}_{G}^{\operatorname{prg}*}(\mathcal{A}) = \operatorname{Pr}[\mathcal{A}^{\operatorname{G}} \Rightarrow 1] - \operatorname{Pr}[\mathcal{A}^{\$} \Rightarrow 1]$$

where the first oracle answers any query by G(S), for a freshly chosen $S \leftarrow \{0,1\}^{\ell}$, and the second oracle answers any query by returning a freshly chosen $R \leftarrow \{0,1\}^{L}$. Consider G = RC4, thought of as a map from 16 bytes to two (or more) bytes.

Assume, as your experiments for Prob. 8 suggested, that the second byte of RC4 output is zero with probability 1/128. Design an adversary that breaks the security of RC4 with prg* advantage at least 0.99. For your analysis, you can use the following tool:

Hoeffding's inequality. (See the Wikipedia entry with this name for more information.) Let X_1, \ldots, X_n be independent and identically distributed random variables, each in $\{0, 1\}$ and each taking on the value 1 with probability p. Let $\overline{X} = \frac{1}{n} \sum X_i$ be the "empirical mean" of the observations, which has the expected value of $E[\overline{X}] = p$. Then for all real numbers $t \ge 0$,

$$\Pr[\left|\overline{X} - p\right| \ge t] \le 2e^{-2nt^2} .$$

Our adversary \mathcal{A} will request n output samples of two bytes each, for a value n that we will determine from the analysis below. It will then compute the fraction of the time \overline{X} that the second byte was 0. We are expecting this value either to be close to 1/128 = 4/512 or close to 1/256 = 2/256, so let's define \mathcal{A} to output 1 if it observes $\overline{X} \geq 3/256$ and output 0 if it observes $\overline{X} < 3/256$.

Let t = 1/513. If \overline{X} is in [1/128 - t, 1/128 + t] then A will output 1. If \overline{X} is in [1/256 - t, 1/256 + t] then A will output 0. If \overline{X} is in neither range, we don't care what it outputs.

Alternatively and more simply, we can have A answer 1 if $\overline{X} > 3/512$, and 0 otherwise, as this simplified algorithm complies with the mandated behavior above.

We now bound \mathcal{A} 's advantage as a function of n. Let X be the RV that is \mathcal{A} 's measurement when it speaks to the RC4 oracle, and let Y be the RV that is \mathcal{A} 's measurement when it speaks to the random-bits oracle. Then

$$\begin{aligned} \mathbf{Adv}_{\mathrm{RC4}}^{\mathrm{prg}*}(\mathcal{A}) &= \operatorname{Pr}\left[\mathcal{A}^{\mathrm{RC4}(\cdot)} \Rightarrow 1\right] - \operatorname{Pr}\left[\mathcal{A}^{\$(\cdot)} \Rightarrow 1\right] \\ &= 1 - \operatorname{Pr}\left[\mathcal{A}^{\mathrm{RC4}(\cdot)} \Rightarrow 0\right] - \operatorname{Pr}\left[\mathcal{A}^{\$(\cdot)} \Rightarrow 1\right] \\ &\geq 1 - \operatorname{Pr}\left[\left|X - \frac{1}{128}\right| \geq \frac{1}{513}\right] - \operatorname{Pr}\left[\left|Y - \frac{1}{256}\right| \geq \frac{1}{513}\right] \\ &\geq 1 - 4e^{-2n(1/513)^2} \end{aligned}$$

We seek adversarial advantage of at least 1 - 1/100, so we should select n large enough that

$$4e^{-2n(1/513)^2} \leq \frac{1}{100}$$

or, solving for n, it suffices to have

$$n \geq \frac{513^2 \cdot \ln 400}{2}$$

Google's calculator tells me that n = 800,000 suffices (rounding up to a nice round value). This is pretty striking: fewer than a million samples suffice for superb accuracy as to whether you're speaking to an RC4 generator or a generator of truly random bits.

The number n can be substantially lowered by switching to an appropriate (one-sided) Chernoff bound, which works better here. I did that in discussion section, ending up with $n \approx 21,000$.

Problem 10. For this problem you will prove that PRG-security (the adversary is given one sample) is essentially equivalent to PRG*-security (where the adversary is given as many samples as it likes). More specifically:

(a) Let adversary \mathcal{A} have advantage $\delta = \mathbf{Adv}_G^{\mathrm{prg}}(\mathcal{A})$ in attacking $G: \{0,1\}^\ell \to \{0,1\}^L$. Exhibit an adversary \mathcal{B} of comparable efficiency that has "good" $\mathbf{Adv}_G^{\mathrm{prg}*}(\mathcal{B})$ advantage.

This part is easy: \mathcal{B} asks its oracle a single query, getting a response Y; then \mathcal{B} runs $\mathcal{A}(Y)$, outputting what \mathcal{A} does. Adversary \mathcal{B} 's behavior precisely emulates the defining behavior for \mathcal{A} 's, whence $\mathbf{Adv}_{G}^{\mathrm{prg}*}(\mathcal{B}) = \delta$. Of course \mathcal{B} is efficient, asking a single query and running in approximately \mathcal{A} 's time

(b) Let adversary \mathcal{B} have advantage $\delta^* = \mathbf{Adv}_G^{\mathrm{prg}*}(\mathcal{B})$ in attacking $G: \{0,1\}^\ell \to \{0,1\}^L$. Exhibit an adversary \mathcal{A} of comparable efficiency that has "good" $\mathbf{Adv}_G^{\mathrm{prg}}(\mathcal{A})$ advantage.

The reduction is a hybrid argument. Let q be the maximum number of oracle queries asked by \mathcal{B} . Without loss of generality, assume that \mathcal{B} always asks exactly q queries. (This entails no loss of generality insofar as \mathcal{B} can always ask extra questions and ignore the answers.) We construct an adversary \mathcal{A} , approximately as efficient as \mathcal{B} , that, on input Y, gets advantage $\mathbf{Adv}_{G}^{\mathrm{prg}}(\mathcal{A}) = \delta^{*}/q$. Define:

algorithm $\mathcal{A}(Y)$ $j \leftarrow [1..q]$ for $i \leftarrow 1$ to j - 1 do $S_i \leftarrow \{0, 1\}^{\ell}$, $Y_i \leftarrow G(S_i)$ $S_j \leftarrow Y$ for $i \leftarrow j + 1$ to q do $Y_i \leftarrow \{0, 1\}^L$ Run $\mathcal{B}^{\mathcal{O}}$, answering \mathcal{B} 's *i*th query with Y_i and letting b be the \mathcal{B} 's final output return b

We observe that when j = 1 and $Y \leftarrow G(S)$ we are running \mathcal{B} in an environment that corresponds to the experiment we denoted G (the first experiment in the definition of the adversary's advantage); and when j = q and $Y \leftarrow \{0, 1\}^L$ we are running \mathcal{B} in an environment that corresponds to the experiment we denoted \$ (the second experiment in the definition of the adversary's advantage). By hybrid argument $\mathbf{Adv}_G^{\mathrm{prg}}(\mathcal{A}) = \delta/q$.

Problem 11. On March 28 colleague Ross Anderson https://www.cl.cam.ac.uk/~rja14/ died at his home in Cambridge, England. Read one or more papers by Anderson, and write a couple of pages in summary or analysis.