Problem Set 4 - Dew Thur, 25 Apr 2024

Problem 9. In class we defined the multiquery PRG advantage for a PRG $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$ by way of

$$
\operatorname{Adv}_{G}^{\operatorname{prg} *}(\mathcal{A})=\operatorname{Pr}\left[\mathcal{A}^{\mathrm{G}} \Rightarrow 1\right]-\operatorname{Pr}\left[\mathcal{A}^{\S} \Rightarrow 1\right]
$$

where the first oracle answers any query by $G(S)$, for a freshly chosen $S \leftrightarrow\{0,1\}^{\ell}$, and the second oracle answers any query by returning a freshly chosen $R \longleftarrow\{0,1\}^{L}$. Consider $G=\mathrm{RC} 4$, thought of as a map from 16 bytes to two (or more) bytes.

Assume, as your experiments for Prob. 8 suggested, that the second byte of RC4 output is zero with probability $1 / 128$. Design an adversary that breaks the security of RC4 with prg* advantage at least 0.99. For your analysis, you can use the following tool:

Hoeffding's inequality. (See the Wikipedia entry with this name for more information.)
Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables, each in $\{0,1\}$ and each taking on the value 1 with probability p. Let $\bar{X}=\frac{1}{n} \sum X_{i}$ be the "empirical mean" of the observations, which has the expected value of $\mathrm{E}[X]=p$. Then for all real numbers $t \geq 0$,

$$
\operatorname{Pr}[|\bar{X}-p| \geq t] \leq 2 e^{-2 n t^{2}}
$$

Problem 10. For this problem you will prove that PRG-security (the adversary is given one sample) is essentially equivalent to PRG^{*}-security (where the adversary is given as many samples as it likes). More specifically:
(a) Let adversary \mathcal{A} have advantage $\delta=\operatorname{Adv}_{G}^{\mathrm{prg}}(\mathcal{A})$ in attacking $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$. Exhibit an adversary \mathcal{B} of comparable efficiency that has "good" $\mathbf{A d v}_{G}^{\text {prg* }}(\mathcal{B})$ advantage.
(b) Let adversary \mathcal{B} have advantage $\delta^{*}=\operatorname{Adv}_{G}^{\mathrm{prg} *}(\mathcal{B})$ in attacking $G:\{0,1\}^{\ell} \rightarrow\{0,1\}^{L}$. Exhibit an adversary \mathcal{A} of comparable efficiency that has "good" $\boldsymbol{A d v}_{G}{ }^{\mathrm{prg}}(\mathcal{A})$ advantage.

Problem 11. On March 28 colleague Ross Anderson https://www.cl.cam.ac.uk/~rja14/ died at his home in Cambridge, England. Read one or more papers by Anderson, and write a couple of pages in summary or analysis.

