Problem Set 5 — Dew Thurs, 9 May 2024

Problem 12. (Asked by a student, more or less.) For $q \geq 1$ an integer constant, suppose we define the q-query PRF-security of $F: \mathcal{K} \times \{0, 1\}^n \rightarrow \{0, 1\}^n$ by way of

$$\text{Adv}_F^q(A) = \Pr[A^{\text{Real}(\cdot)} \Rightarrow 1] - \Pr[A^{\text{Rand}(\cdot)} \Rightarrow 1]$$

where the first oracle begins by choosing a random $K \leftarrow \mathcal{K}$ and subsequently, for the first q queries, answers any query $\text{Real}(X)$ with $F_K(X)$; and the second oracle begins by choosing a random $\rho \leftarrow \text{Func}(n)$ and subsequently, for the first q queries, answers any query $\text{Rand}(X)$ with $\rho(X)$; and where both oracles answer queries beyond the q-th query with the empty string. In short, it is our usual PRF security notion except that the oracle shuts up after answering q queries.

Part A. Construct a PRF F that has perfect 1-query PRF security but terrible 2-query PRF security.

Part B. Generalize: for $1 \leq q \ll 2^n$, construct a PRF F that has perfect q-query PRF security but terrible $(q + 1)$-query PRF security.

Problem 13. Bob proposes a 128-bit blockcipher, Tango32, that works like this. It has 16 S-boxes, S_1, \ldots, S_{16}, each a permutation mapping 8-bits to 8-bits. It uses a 128-bit key that gets mapped into 32 subkeys, K_1, \ldots, K_{32}, each 128 bits. To encrypt an input block X, for each of 32 rounds i, the cipher:

1. Replace X by $X \oplus K_i$;
2. Replace the j-th byte of X, $X[j]$, by $S_j[X[j]]$ (for each $1 \leq j \leq 16$);
3. Circularly rotate X by c_i byte position to the left, $X \leftarrow X \lll 8c_i$, where $c_i \in [0..15]$.

The ciphertext is the final value of X.

Bob has carefully designed Tango32’s S-boxes, key schedule, and rotation constants.

Break Bob’s design using at most a few hundred plaintext/ciphertext pairs. Your break should be so bad that you can subsequently decrypt anything that’s encrypted with the same key.

Problem 14. CBC-Chain is a stateful blockcipher-based mode of operation. To encrypt, we use CBC with an IV that is the last ciphertext block produced from the prior encryption. Initially, the IV is a random string.

Part A. Formally define key generation, encryption, and decryption for CBC-Chain[E] given a blockcipher $E: \{0, 1\}^k \times \{0, 1\}^n \rightarrow \{0, 1\}^n$.

Part B. Show that CBC-Chain[E] is never IND-secure by giving a devastating, efficient attack on it.
Problem 15. Can a blockcipher \(E : \{0, 1\}^{128} \times \{0, 1\}^{128} \rightarrow \{0, 1\}^{128} \) be secure as a PRP if it has the following characteristics? Briefly justify each answer. Where necessary, interpret numbers as 128-bit strings.

Part A. The first bit of \(E_K(X) \) doesn’t depend on the last bit of \(X \).

Part B. The first bit of \(E_K(X) \) doesn’t depend on the last bit of \(K \).

Part C. \(\bigoplus_{i=1}^{10} E_K(i) = 0 \).

Part D. \(E_K^{-1}(0) = E_K(1) \).

Part E. \(E_K(K) = K \).