\square

ECS 127 Quiz - Cryptography - Spring 2016

Instructions: Please fill in the boxes at the top margin of this page!
Throughout the exam, please write neatly. If we can't easily ready your writing, it's wrong. Relax and take a breath (it's always good to remember to breathe). Good luck.

LASTNAME, Firstname:

Signature:

Academic misconduct reminder: Please remember my rule about academic conduct (that cheating means getting an " F " in the course). The exam is closed book, closed notes, closed neighbor. Any device that can be powered off must be powered off for the duration of the exam. You may not sit next to someone you know. In that sentence, "next to" means to your left, right, directly behind, or diagonally behind; and "someone you know" means that they're a friend or someone you've worked with (in this class or some other) or someone with you whom you have some sort of understanding concerning cheating. If you see anything inappropriate during an exam, please report it immediately by going to see me or a TA.

1. Consider the problem of achieving privacy in the public-key setting (the problem solved by public-key encryption problem). If Alice wants to send a private message M to Bob, then
\qquad (who?) generates a public key $P k$ and a corresponding secret key $S k$.
Alice computes a ciphertext C for plaintext M as a function of \qquad
2. In the dating problem, Alice holds a bit $a \in\{0,1\}$ and Bob holds a bit $b \in\{0,1\}$. We intend that $a=1$ when Alice wants to go on a date with Bob, and $b=1$ when Bob wants to go on a date with Alice. Alice and Bob want to compute (Boolean formula involving a and b) in such a way that each party learns only this.
We don't care if Alice learns b when $a=1$, or if Bob learns a when $b=1$, because
\qquad
3. In a single sentence, describe Kerckhoff's principle.

4. Alice uses a substitution cipher with an alphabet Σ that consists of the 95 printable ASCII characters. How many possible keys are there? \qquad (Write a mathematical expression. Don't simplify).
5. Consider Diaconis's algorithm for breaking a substitution cipher. It assumes we have values
 The algorithm defines the plausibility of a candidate plaintext $M=x_{1} \cdots x_{m} \in \Sigma^{m}$ as the number $\operatorname{Pl}(M)=\square$. (Given a ciphertext $C=c_{1} \cdots c_{m}$, the algorithm then attempts to find a permutation $f: \Sigma \rightarrow \Sigma$ that maximizes $\operatorname{Pl}\left(f\left(c_{1}\right) \cdots f\left(c_{m}\right)\right)$.
6. Compute the following number:

$$
\operatorname{Pr}\left[X \stackrel{\&}{\leftarrow}\{0,1\}^{128} ; Y \stackrel{\S}{\leftarrow}\{0,1\}^{128}: \quad X=Y\right]=\square .
$$

7. In a picture or in English text, describe some high-level aspect about the algorithm A5/1 (a stream cipher used in cell phones).

8. We described a (classical) PRG (pseudorandom generator) as a map $G:\{0,1\}^{n} \rightarrow\{0,1\}^{N}$ with $n<N$. We then measured the efficacy of an adversary A attacking such a PRG G with a real number $\mathbf{A d v} \mathbf{v}_{G}(A)$, which Prof. Rogaway defined as

where
\square
(Explain any terms you use in the mathematical expression)
9. How many 10 -character passwords are there of the form: nine of the characters are lower-case English letters, while one of the characters is an upper-case English letter. simplify.
10. True False (\leftarrow Darken the correct answer)

There is a finite field, $\mathrm{GF}(100)$, on 100 points. Now explain:
\square
11. Draw a picture showing two rounds of a Feistel network (the construction used in DES). Label the input block $M=M_{1} M_{2}$ with M_{1} and M_{2}, where $\left|M_{1}\right|=\left|M_{2}\right|$, and call the key-dependent round functions F_{1} and F_{2}.
\square
12. True False DES would remain invertible - it would still be a blockcipher - even if each S-box (the eight functions $S_{1}, \ldots, S_{8}:\{0,1\}^{6} \rightarrow\{0,1\}^{4}$) were replaced by the function $S(x)=x^{2} \bmod 16$. (The 6 -bit x is treated as a number, then the numeric result is regarded as a 4 -bit string.) Now explain:

13. True False Dog day didn't work out so well, as there was only one dog, and he wouldn't stop barking. Extra credit: name the $\operatorname{dog}(s)$, or write a limerick about dog day.

You leave this blank, we'll fill it in \longrightarrow

page 1	page 2	page 3	Σ

