${ m Quiz}/A$	Attendance 3F	Total:	
Firstname Lastname	-	L	ID#

Complete the narrative, filling in the blanks. Bracketed words are hints, not part of the narrative.

1. A pseudorandom generator (PRG) is a function $G: \{0,1\}^{\ell} \to \{0,1\}^{L}$ with $L > \ell$. We want G(S) to *look* uniformly random when S is uniformly random. To quantify this, we defined the *advantage* of an adversary \mathcal{A} in attacking G as the real number

$$\operatorname{Adv}_{G}^{\operatorname{prg}}(\mathcal{A}) = \operatorname{Pr}[S \leftarrow \{0,1\}^{\ell} : \mathcal{A}(G(S)) \Rightarrow 1] - \operatorname{Pr}[R \leftarrow \{0,1\}^{L} : \mathcal{A}(R) \Rightarrow 1].$$

Here the symbol "⇒" means [or: is read]
 .
An advantage of 0 would mean that \mathcal{A} is doing
 at attacking G , while an advantage of 1 would mean that \mathcal{A} is doing
 at attacking G . In general, the higher an adversary's advantage the
 it is doing.
2. In class we gave a *construction* to convert a PRG $g: \{0,1\}^{\ell} \to \{0,1\}^{\ell+1}$ to a PRG $G: \{0,1\}^{\ell} \to \{0,1\}^{L}$.
Computing G once required computing g
 times.
3. To prove our construction sound, we gave a *reduction*. It quantifies the extent to which g 's security

 3. To prove our construction sound, we gave a relation. It quantifies the extent to which g is security implies G's. The reduction transformed an adversary \mathcal{B} for attacking

 \mathcal{A} for attacking
 .

 We showed that if
 [a number] is large

 then
 [a number] is large, too.