Quiz 2 tomorrow & PS4

- Q2: review PS1-3 and quiz 1, especially difficult questions, definitions from class
- PS4 Q5: calculus may be used; Q8c ⊊ **proper subset** of, *A* ⊊ *B* means that *A* is a subset of but not equal to *B*

Mathematical Induction

To prove proposition P(n) for all integers $n \ge n_0$, prove the <u>basis</u>: $n = n_0$ is true <u>Inductive step</u>: suppose n = k is true, show n = k + 1 is true

1. Prove that $n^3 + 5n$ is divisible by 6 for every $n \ge 1$.

<u>Basis</u>: n = 1: $6 | 1^3 + 5(1)$ <u>Inductive step</u>: suppose n = k is true, so $6 | k^3 + 5k$ Check n = k + 1: $(k + 1)^3 + 5(k + 1) = (k^3 + 3k^2 + 3k + 1) + (5k + 5)$ $= (k^3 + 5k) + (3k^2 + 3k + 6)$ $= (k^3 + 5k) + 3k(k + 1) + 6$ From the inductive hypothesis, $6 | (k^3 + 5k) \cdot k(k + 1)$ is even, so 6 | 3k(k + 1),

and 6 | 6. Inductive step verified.

2. Prove that $8^n - 3^n$ is divisible by 5 for every $n \ge 1$.

Basis: $n = 1:5 | 8^{1} - 3^{1}$ Inductive step: suppose n = k is true, so $5 | 8^{k} - 3^{k}$ Check n = k + 1: $8^{k+1} - 3^{k+1} = 8 * 8^{k} - 3 * 3^{k}$ $= 8 * 8^{k} - 3 * 8^{k} + 3 * 8^{k} - 3 * 3^{k}$ $= (8 - 3) * 8^{k} + 3 * (8^{k} - 3^{k})$ $= 5 * 8^{k} + 3 * (8^{k} - 3^{k})$

We know that $5 | 5 * 8^k$. From the inductive hypothesis, $5 | (8^k - 3^k)$. Inductive step verified.

3. Prove that $n^2 > 7n + 1$ for all $n \ge 8$.

<u>Basis</u>: n = 8: 64 > 56 + 1<u>Inductive step</u>: suppose n = k is true, so $k^2 > 7k + 1$ Check n = k + 1, $(k + 1)^2 > 7(k + 1) + 1$ LHS: $(k + 1)^2 = k^2 + 2k + 1 > (7k + 1) + 2k + 1 = 7(k + 1) + 1 + (2k - 6)$ Since $k \ge 8$, 2k - 6 > 0 so LHS is greater than RHS, inductive step verified.

4. Induction on a definition An expression E is defined as

 $E \rightarrow < Number >$ $E \rightarrow (E + E) \mid (E * E) \mid (E^{E}) \mid \ln(E)$ Prove that an expression *E* has the same number of (and).

<u>Basis</u>: E = < Number >, 0 ('s and)'s

<u>Inductive step</u>: suppose n = k is true, E_k has the same number of (and). Check n = k + 1, E_{k+1} :

Take on either the form $(E + E) | (E * E) | (E^{E}) | \ln(E)$, all of which contain an equal number of (and). Inductive step verified.

Strong vs. Weak Induction

- method so far is sometimes called **weak induction**, $P(k) \rightarrow P(k+1)$
- **strong induction** shows $(\forall n)P(n)$ by showing $P(1) \land ... \land P(k) \rightarrow P(k+1)$
- both approaches are equally "strong", strong induction is easier for certain proofs, such as PS4 Q6
- 5. Prove that $a_n \leq 2^n$ for the sequence $a_0 = 1$, $a_1 = 2$, $a_2 = 3$, $a_i = a_i + a_{i-1} + a_{i-2}$ <u>Basis</u>: n = 0,1,2 true because $1 \leq 2^0, 2 \leq 2^1, 3 \leq 2^2$ <u>Inductive step</u>: assume $n = 0 \dots (k - 1)$ is true, show that n = k is true i.e. show that $P(k) = a_k \leq 2^k$

$$\begin{aligned} a_k &= a_{k-1} + a_{k-2} + a_{k-3} \\ &\leq 2^{k-1} + 2^{k-2} + 2^{k-3} \\ &\leq 2^0 + 2^1 + \dots + 2^{k-3} + 2^{k-2} + 2^{k-1} \end{aligned}$$

Geometric series: $\leq 2^k - 1 \leq 2^k$

Envelope substitution question

A store sells envelopes in packages of 5 and 12. Prove that for $\ge n$, the store can sell exactly *n* envelopes. To find *n* without trying every number, start with the smallest substitutions to make one more envelope (=inductive step).

The lowest substitution going from 5- to 12-packs is $7(5) \rightarrow 3(12)$. This substitution needs at least 7 5-packs.

Consider the case with less than 7 5-packs, i.e. at most 6 5-packs (\leq 30). The lowest substitution going from 12- to 5-packs is 2(12) \rightarrow 5(5). This substitution needs at least 2 12-packs (\geq 24).

To find *n*, we need only to check $30 < n \le 54$, since there will be numbers below 30 that cannot be achieved, and any number 54 or above will work for certain. We will find n = 44 to be the first number beyond which all *n* is satisfied.

We can also reverse the order of substitutions. In this example that would be checking $12 < n \le 47$, which also includes n = 44.

Once n is found, we can formally prove our hypothesis by induction using n as the basis.