ECS 20 — Lecture 9 — Fall 2013 —24 Oct 2013 Phil Rogaway

Today:

o Sets of strings (languages) o Regular expressions Distinguished Lecture after class : "Some Hash-Based Data Structures and Algorithms Everyone Should Know" Prof. Michael Mitzenmacher, Harvard

Sets of STRINGS (elements of formal language theory)

Define and give examples:

Alphabet – a finite nonempty set (of "characters") Σ
 Strings - a finite sequence of characters drawn from some alphabet. operation: concatenation, xy or x o y
 Language – a set of strings, all of them over some alphabets extend concatenation to langauges

Empty string (ε)

General set operations: union, intersection, complement; and concatenation

 $A^* - \text{Kleene closure} - \text{define it} - \bigcup_i \ge_0 A^i$ $A^0 = \{ \varepsilon \} \quad (\text{why? For } A^i A^j = A^{i+j})$ Σ^*

BYTES = {0,1}⁸ BYTES*

ENGLISH-WORDS = {a, aah, aardvark, aardwolf, aba, ..., zymotic, zymurgy} PRIMES = ... SAT = ...

The relationship between languages and **decision questions**.

Regular expression over Σ :

- 1) *a* is a regular expression, for every $a \in \Sigma$. Also, symbols ε and \emptyset are regular expressions.
- 2) I f α and β are regular expressions, then so are ($\alpha \circ \beta$), ($\alpha \cup \beta$), (α^*)

We routinely omit parenthesis, understanding it as a shorthand, with * binding most tightly, then concatenation, then union.

Example: a number (0-1-2-3-4-5-6-7-8-9) (0-1-2-3-4-5-6-7-8-9)*

A real number in decimal notation

(0-1-2-3-4-5-6-7-8-9)(0-1-2-3-4-5-6-7-8-9)*.(0-1-2-3-4-5-6-7-8-9)*.

An even number in binary $(0 \cup 1)0$

Bit strings that start and top with the same bit (having at least one bit) $00^* \cup 11^* \cup 0(0 \cup 1)^*0 \cup 1(0 \cup 1)^*1$

The complement of that set

 $\varepsilon \cup 0(0 \cup 1)^*1 \cup 1(0 \cup 1)^*0$

```
Exercise 1: write a regular expression for all strings over {0,1}
that contain _some_ '111'.
        (0u1)* 111 (0u1)*
```

```
Exercise 2: write a regular expression for all strings over {a,b}
whose length is divisible by 3.
        (aub) (aub) (aub))*
```

```
Exercise 3: write a regular expression for all strings over {a,b}
whose length is NOT divisible by 3.
        (aub)(aub))*(aub) u
        (aub)(aub))*(aub)(aub)
```

Relations

(Change of topics. But do define some relations on strings, regular languages, and DFAs to tie the two topics together.) **DEF:** A and B sets. Then a *relation* R is subset of A × B. $R \subseteq A \times B$ Variant notation: $x \in y$ for $(x, y) \in \mathbb{R}$ May use a symbol like ~ or < for a relations $x \sim y$ if $(x, y) \in$ Relations in arithmetic, where A and B are both natural numbers: = < <= > >= | divides what about succ, +, * NO: function symbols, not relations In set theory: \in what about \varnothing NO: constant symbol Relations are useful for things other than numbers and sets and the like: S = all UCD students for F13C = all UCD classes for F13 P = all UCD professors for F13E: enrolled relation \subseteq S x C s E c (ie, (s,c)\in E) - x is taking class y T: teaches relation \subseteq C x P c T p (ie, $(c,p) \setminus in T$) - professor p is teaching class c this term You can *compose* relations what *should* ЕоТ mean, do you think $E \circ T \subseteq S \times P$ $S \times C \quad C \times P \quad -> \quad S \times P$ s EoT p % f(x) = f(x) + f(x)student s is taking some course that p is teaching -p is s's teacher this term What I've just given is the general definition $R \subseteq X \times Y$ $S \subseteq Y \times Z$ then R o S $\subseteq X \times Z$ is {(x,z): $\exists y \text{ in } Y \times Ry \text{ and } ySz$ }

What _should_ R⁻¹ should be? formalize

```
if R \subseteq X \times Y is a relation that R^{-1} is the relation on Y \times X
   where (y, x) R^{-1} iff x R y.
More examples:
   Often X = Y is the *same* set
      Relations on natural numbers, real numbers, strings, etc.
    X = set of strings
    x \leq y "is a substring of y"
    \alpha \, \text{and} \, \beta are regular expressions.
    \alpha \sim \beta if L(\alpha) = L(\beta)
       (0u1)^*(0u1)^* ~ (00 u 01 u 10 u 11)^* TRUE
T/F:
       e ~ e*
                                 TRUE
       0(0u1)0
                    ~ 1(Ou1)1
                                                           FALSE
```

Relations, continued. Let R be a relation on $A \times A$ We say that R is

Reflexive: if x R xfor all x**Symmetric:** if x R y \rightarrow y R xfor all x,y**Transitive:** if x R y and y R z \rightarrow x R z for all x, y, z

If R has all three properties, R is said to be an **equivalence relation**

	Reflexive	Symmetric	Transitive	comments
<pre>= on Integers (or anything else)</pre>	Yes	Yes	Yes	
<= , integers	Yes	No	Yes	antisymmetric
⊆, sets	Yes	No	Yes	antisymmetric
<pre>x E y if x and y are regular expressions and the regular L(x) = L(y)</pre>	Yes	Yes	Yes	blocks are languages
x S y if x is a substri of y	ng Yes	No	Yes	
x R y where x and y are strings and M is a some DFA and you go to the same state on processin	Yes	Yes	Yes	

x and y				
x y if 3 x-y prove this one	Yes	Yes	Yes	Carefully
Prove ente ene				and write
out its blocks.				Define when
n m				

We only got to here – and then I jumped ahead to defining functions. We'll take up equivalence classes and quotients next time, as well as properties of functions, like injectivity and surjectivity.

```
_____
4. Functions
_____
Definition: A function f is a relation on A x B such that
             there is one and only one pair a R b for every in A.
We write b=f(a) to mean that (a,b) in f.
(Just one way to do it: we could have defined functions as the primitive
and used the function to define the relation, putting in a pair
(a,f(a)) for every a in A.)
- We call A the domain of f, Dom(f).
- We call B the *codomain* (or *target*) of f.
 Note that this does not mean the set \{b: f(a)=b \text{ for some } a \text{ in } A\}!
  That is a different (and important) st called the *Range* (or *image*)
  of f. Denote it f(A).
Example 1:
Domain={1,2,3}
 f(a) = a^2.
Dom(f) = \{1, 2, 3\}
 f(A) = \{1, 4, 9\}
 co-domain: unclear, might be \N, might be \R, ....
Example 2:
 Domain = students in this class
b(x) = birthdays, encoded as \{1, ..., 12\} \times \{1...31\}.
b(phil) = (7, 31)
b(ellen) = (4, 1)
Example 3:
f: \ R \rightarrow \ R defined by f(x) = x^2
 is it a function?
 Represent it as a graph
 Two functions f and g are equal, f=g, if their domains and ranges are equal
 and f(x) = g(x) for all x in Dom(f)
Function composition
```

```
fog
f: A \rightarrow B, g: B \rightarrow C
the (g o f) : A \rightarrow C is defined by
     (g \circ f)(x) = g(f(x))
 Kind of "backwards" notation, but fairly tradition. Some algebrists
 will reverse it, (x) (f o g) "function operates on the left"
 Some computer scientists like to denote functions by "lambda expressions"
  To say that f is the function that maps x to x^2 we write
  f = lambda x. x^2
 Here x is just a formal variable;
   lambda x . x^2 = lambda y \cdot y^2
  The domain is not explicitly
 Functions don't have to be defined on numbers, of course
 |x| = maps \Sigma^* \rightarrow \N
hd(x) = the first character of the string x, x he emptystring
 tl(x) = all but the first character of x (define how when x=\emptystring)?
\dim(A) = the dimensions of the matrix A, regarded as a pair of natural
numbers
```