
1

ECS 20 — Lecture 9 — Fall 2013 —24 Oct 2013
Phil Rogaway

Today:

o Sets of strings (languages)
o Regular expressions

Distinguished Lecture after class :
 “Some Hash-Based Data Structures and Algorithms Everyone Should Know”
 Prof. Michael Mitzenmacher, Harvard

Sets of STRINGS (elements of formal language theory)

Define and give examples:

 Alphabet a finite nonempty set (of “characters”)
 Strings - a finite sequence of characters drawn from some alphabet.
 operation: concatenation, xy or x o y
 Language – a set of strings, all of them over some alphabets
 extend concatenation to langauges

 Empty string ()
General set operations: union, intersection, complement; and concatenation

 A* -- Kleene closure – define it – i 0 i

 A0 = { } (why? For Ai Aj =Ai+j)
*

BYTES = {0,1}8
BYTES*

ENGLISH-WORDS = {a, aah, aardvark, aardwolf, aba, …, zymotic, zymurgy}
PRIMES = …
SAT = …

The relationship between languages and decision questions.

Mx

yes, xL

no, xL

Regular expression over :

2

1) a is a regular expression, for every a. Also, symbols  and  are regular

expressions.
2) I fand  are regular expressions, then so are (o ), (), (*)

We routinely omit parenthesis, understanding it as a shorthand, with * binding most
tightly, then concatenation, then union.

Example: a number
(0123456789) (0123456789)*

A real number in decimal notation
(0123456789)(0123456789)* . (0123456789)*.

An even number in binary
(01)0

Bit strings that start and top with the same bit (having at least one bit)
00* ***

The complement of that set
 **

Exercise 1: write a regular expression for all strings over {0,1}

 that contain _some_ '111'.

 (0u1)* 111 (0u1)*


Exercise 2: write a regular expression for all strings over {a,b}

 whose length is divisible by 3.

 (aub)(aub)(aub))*




Exercise 3: write a regular expression for all strings over {a,b}

 whose length is NOT divisible by 3.

 (aub)(aub)(aub))*(aub) u

 (aub)(aub)(aub))*(aub)(aub)

Exercise 4: write a regular expression for all strings over {0,1}

 that contain an even # of 0's and an even # of 1's.

Kind of hard


Exercise 5: write a regular expression for all strings over {0,1}

 that contain the same number of 0’s and 1’s.

CAN’T BE DONE. Why? Take ECS120!

Relations

3

(Change of topics. But do define some relations on strings, regular

languages, and DFAs to tie the two topics together.)

DEF: A and B sets. Then a *relation* R is subset of A  B.

R A  B

Variant notation: x R y for (x,y) R

May use a symbol like ~ or < for a relations

 x ~ y if (x,y) ~

Relations in arithmetic, where A and B are both natural numbers:

 = < <= > >=

 | divides

 what about succ, +, * NO: function symbols, not relations

In set theory:

  

 what about  NO: constant symbol

Relations are useful for things other than numbers and sets and the like:

S = all UCD students for F13

C = all UCD classes for F13

P = all UCD professors for F13

E: enrolled relation S x C
s E c (ie, (s,c)\in E) - x is taking class y

T: teaches relation C x P
c T p (ie, (c,p)\in T) - professor p is teaching class c this term

You can *compose* relations

what _should_

 E o T

mean, do you think

 E o T S  P S  C C  P -> S  P
 s EoT p if there exists c in C such that s E c and c T p --

 student s is taking some course that p is teaching --

 p is s's teacher this term

What I've just given is the general definition

R ⊆ X x Y

S ⊆ Y x Z then R o S ⊆ X x Z is {(x,z): y in Y xRy and ySz}

What _should_ R-1 should be?

 formalize

4

 if R X  Y is a relation that R-1 is the relation on Y  X
 where (y,x) R-1 iff x R y.

More examples:

 Often X = Y is the *same* set

 Relations on natural numbers, real numbers, strings, etc.

 X = set of strings

 x  y "is a substring of y"

 and  are regular expressions.

  ~  if L() = L()

T/F: (0u1)^*(0u1)^* ~ (00 u 01 u 10 u 11)^* TRUE

 e ~ e* TRUE

 0(0u1)0 ~ 1(0u1)1 FALSE

Relations, continued. Let R be a relation on A  A

We say that R is

Reflexive: if x R x for all x

Symmetric: if x R y  y R x for all x,y

Transitive: if x R y and y R z  x R z for all x, y, z

If R has all three properties, R is said to be an equivalence relation

 Reflexive Symmetric Transitive comments

= on Integers Yes Yes Yes

 (or anything else)

<= , integers Yes No Yes antisymmetric

, sets Yes No Yes antisymmetric

x E y if x and y are

regular expressions and Yes Yes Yes blocks are

the regular

L(x) = L(y) languages

x S y if x is a substring Yes No Yes

of y

x R y where x and y are

strings and M is a some

DFA and you go to the Yes Yes Yes

same state on processing

5

x and y

x | y if 3 | x-y Yes Yes Yes Carefully

prove this one

 and write

out its blocks.

 Define when

n | m

We only got to here – and then I jumped ahead to defining functions. We’ll take up equivalence classes and
quotients next time, as well as properties of functions, like injectivity and surjectivity.

4. Functions

Definition: A function f is a relation on A x B such that

 there is one and only one pair a R b for every in A.

We write b=f(a) to mean that (a,b) in f.

(Just one way to do it: we could have defined functions as the primitive

and used the function to define the relation, putting in a pair

(a,f(a)) for every a in A.)

- We call A the domain of f, Dom(f).

- We call B the *codomain* (or *target*) of f.

 Note that this does not mean the set {b: f(a)=b for some a in A}!

 That is a different (and important) st called the *Range* (or *image*)

 of f. Denote it f(A).

Example 1:

 Domain={1,2,3}

 f(a) = a^2.

 Dom(f) = {1,2,3}

 f(A) = {1,4,9}

 co-domain: unclear, might be \N, might be \R,

Example 2:

 Domain = students in this class

 b(x) = birthdays, encoded as {1,..,12} x {1..31}.

 b(phil) = (7,31)

 b(ellen) = (4,1)

Example 3:

 f: \R -> \R defined by f(x) = x^2

 is it a function?

 Represent it as a graph

 Two functions f and g are equal, f=g, if their domains and ranges are equal

 and f(x) = g(x) for all x in Dom(f)

Function composition

6

 f o g

 f: A -> B, g: B -> C

 the (g o f) : A -> C is defined by

 (g o f)(x) = g(f(x))

 Kind of "backwards" notation, but fairly tradition. Some algebrists

 will reverse it, (x) (f o g) "function operates on the left"

 Some computer scientists like to denote functions by "lambda expressions"

 To say that f is the function that maps x to x^2 we write

 f = lambda x. x^2

 Here x is just a formal variable;

 lambda x . x^2 = lambda y . y^2

 The domain is not explicitly

 Functions don't have to be defined on numbers, of course

 |x| = maps \Sigma^* -> \N

 hd(x) = the first character of the string x, x\ne emptystring

 tl(x) = all but the first character of x (define how when x=\emptystring)?

 dim(A) = the dimensions of the matrix A, regarded as a pair of natural

numbers

