ECS 20 — Lecture 9 — Fall 2013 —24 Oct 2013
Phil Rogaway

Today:
o Sets of strings (languages)
o Regular expressions
Distinguished Lecture after class :

“Some Hash-Based Data Structures and Algorithms Everyone Should Know”
Prof. Michael Mitzenmacher, Harvard

Sets of STRINGS (elements of formal language theory)

Define and give examples:

Alphabet - afinite nonempty set (of “characters”)
Strings - a finite sequence of characters drawn from some alphabet.
operation: concatenation, xyorxoy
Language - a set of strings, all of them over some alphabets
extend concatenation to langauges

Empty string (¢)

General set operations: union, intersection, complement; and concatenation
A* -- Kleene closure - define it - \U; > Al

A'={e} (why?ForAl Ai=A")

2*

BYTES = {0,1)8
BYTES*

ENGLISH-WORDS = {a, aah, aardvark, aardwolf, aba, ..., zymotic, zymurgy}
PRIMES = ...
SAT = ...

The relationship between languages and decision questions.

yes, xelL

X M

no, XL

Regular expression over X:



1) aisaregular expression, for every aeX. Also, symbols ¢ and & are regular
expressions.
2) Ifa and B are regular expressions, then so are (a0 B), (a0 U B), (a*)

We routinely omit parenthesis, understanding it as a shorthand, with * binding most
tightly, then concatenation, then union.

Example: a number
(0u1lu2U3u4U5060L70U8U9) (0L1L2U3U4AU5U6LT7UBLI)*

A real number in decimal notation
(0ulu2u3udusueu7uU8U9)(0LT1L2U3UAUSUELT7UBUI)* . (0LT1UL2U3U4U5UELT7UBU9)

An even number in binary
(0uno

Bit strings that start and top with the same bit (having at least one bit)
00* U I11* U 0(0U1)*0 U 1(0L1)*1

The complement of that set
€ v 0(0ul)*1U 1(0L1)*0

Exercise 1: write a regular expression for all strings over {0,1}
that contain some '111°'.
(Oul)* 111 (Oul)~*

Exercise 2: write a regular expression for all strings over {a,b}
whose length is divisible by 3.
(aub) (aub) (aub) ) *

Exercise 3: write a regular expression for all strings over {a,b}
whose length is NOT divisible by 3.

(aub) (aub) (aub)) * (aub) u

(aub) (aub) (aub)) * (aub) (aub)

Exercise 4: write a regular expression for all strings over {0,1}
that contain an even # of 0's and an even # of 1's.
Kind of hard

Exercise 5: write a regular expression for all strings over {0,1}
that contain the same number of 0’s and 1’s.
CAN’T BE DONE. Why? Take ECS120!

Relations




(Change of topics. But do define some relations on strings, regular
languages, and DFAs to tie the two topics together.)

DEF: A and B sets. Then a *relation* R is subset of A X B.

R CA X B

Variant notation: x Ry for (x,y) €R

May use a symbol like ~ or < for a relations

x ~y 1f (x,y) €~

Relations in arithmetic, where A and B are both natural numbers:

= < <= > >=
| divides
what about succ, +, * NO: function symbols, not relations

In set theory:
(S
what about & NO: constant symbol

Relations are useful for things other than numbers and sets and the like:

n
|

= all UCD students for F13
all UCD classes for F13
P = all UCD professors for F13

(@]
Il

=

enrolled relation €S x C
E ¢ (ie, (s,c)\in E) - x is taking class y

)

T: teaches relation CC x P
c Tp (ie, (c,p)\in T) - professor p is teaching class c this term

You can *compose* relations

what should
EolT

mean, do you think

EoTCS XP SXC CXP -> S X P

s EoT p if there exists ¢ in C such that s E ¢c and ¢ T p --
student s is taking some course that p is teaching --
p 1s s's teacher this term

What I've just given is the general definition

RC XxY
SCYxZ thenRoSCE XxZis{(x,z): Ay in Y xRy and ySz}

What should R should be?
formalize



if R CX X Y is a relation that R! 1is the relation on Y X X
where (y,x) R! iff x R y.

More examples:
Often X = Y is the *same* set
Relations on natural numbers, real numbers, strings, etc.

X = set of strings

x <y "is a substring of y"

o and B are regular expressions.

o~ B if L(a) = L(P)
T/F: (Oul)”**(Oul)”~* ~ (00 u 01 u 10 u 11)~~* TRUE
e ~ e¥* TRUE
0(Oul)0 ~ 1(0ul)l FALSE

Relations, continued. Let R be arelationon A x A
We say that R is

Reflexive: if xR X for all x

Symmetric: if xRy > yRXx for all x,y
Transitive: if xRyandyRz —» xR zforall x,y, z

If R has all three properties, R is said to be an equivalence relation

Reflexive Symmetric Transitive comments

= on Integers Yes Yes Yes

(or anything else)
<= , 1integers Yes No Yes antisymmetric
C, sets Yes No Yes antisymmetric
x E y if x and y are
regular expressions and Yes Yes Yes blocks are
the regular
L(x) = L(y) languages
x Sy if x is a substring Yes No Yes
of y

x R y where x and y are

strings and M is a some

DFA and you go to the Yes Yes Yes
same state on processing



x and y

x |y 1if 3 | x-y Yes Yes Yes Carefully
prove this one

and write
out its blocks.

Define when
n | m

We only got to here - and then I jumped ahead to defining functions. We'll take up equivalence classes and
quotients next time, as well as properties of functions, like injectivity and surjectivity.

Definition: A function f is a relation on A x B such that
there is one and only one pair a R b for every in A.

We write b=f(a) to mean that (a,b) in f.

(Just one way to do it: we could have defined functions as the primitive
and used the function to define the relation, putting in a pair
(a,f(a)) for every a in A.)

- We call A the domain of £, Dom(f).

- We call B the *codomain* (or *target*) of f.
Note that this does not mean the set {b: f(a)=b for some a in A}!
That is a different (and important) st called the *Range* (or *image*)
of £. Denote it f(A).

Example 1:
Domain={1,2, 3}
f(a) = a”2.
Dom(f) = {1,2,3}
@A) = {1,4,9}
co-domain: unclear, might be \N, might be \R,

Example 2:
Domain = students in this class
b(x) = birthdays, encoded as {1,..,12} x {1..31}.

b (phil) = (7,31)

b(ellen) = (4,1)
Example 3:

f: \R -> \R defined by f(x) = x"2

is it a function?
Represent it as a graph

Two functions f and g are equal, f=g, if their domains and ranges are equal
and f(x) = g(x) for all x in Dom(f)

Function composition



f og

f: A -> B, g: B ->C
the (g o f) : A -> C is defined by
(g o f)(x) = g(f(x))
Kind of "backwards" notation, but fairly tradition. Some algebrists
will reverse it, (x) (f o g) "function operates on the left"
Some computer scientists like to denote functions by "lambda expressions"
To say that f is the function that maps x to x"2 we write
f = lambda x. x"2
Here x is Jjust a formal variable;
lambda x . x"2 = lambda vy . y*2
The domain is not explicitly
Functions don't have to be defined on numbers, of course
|x| = maps \Sigma”* -> \N
hd(x) = the first character of the string x, x\ne emptystring
tl(x) = all but the first character of x (define how when x=\emptystring)?
dim(A) = the dimensions of the matrix A, regarded as a pair of natural
numbers



