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Abstract—Numerical software is used in a wide variety of ap-
plications including safety-critical systems, which have stringent
correctness requirements, and whose failures have catastrophic
consequences that endanger human life. Numerical bugs are
known to be particularly difficult to diagnose and fix, largely
due to the use of approximate representations of numbers such
as floating point. Understanding the characteristics of numerical
bugs is the first step to combat them more effectively. In this
paper, we present the first comprehensive study of real-world
numerical bugs. Specifically, we identify and carefully examine
269 numerical bugs from five widely-used numerical software
libraries: NumPy, SciPy, LAPACK, GNU Scientific Library, and
Elemental. We propose a categorization of numerical bugs, and
discuss their frequency, symptoms and fixes. Our study opens
new directions in the areas of program analysis, testing, and
automated program repair of numerical software, and provides
a collection of real-world numerical bugs.

I. INTRODUCTION

Numerical software provides the foundation for a wide
variety of software applications, including safety-critical sys-
tems such as control systems for vehicles, medical equipment,
and industrial plants. Libraries for machine learning (e.g.,
TensorFlow, scikit-learn), computer graphics (e.g., OpenGL),
computer vision (e.g., OpenCV), and data analysis (e.g., Pandas)
rely on numerical libraries such as NumPy [7], SciPy [24],
and LAPACK [6] to perform numerical calculations. Domain-
specific languages such as GNU Octave for scientific pro-
gramming and R for statistical computing integrate numerical
libraries to provide support for numerical computations.

Numerical software relies heavily on floating point arithmetic,
which brings additional challenges in terms of software
reliability and performance. Floating point is a widely used
representation that approximates real numbers. By nature,
floating point introduces imprecision in numerical calculations.
Sources of numerical errors include extreme sensitivity to
roundoff, floating-point exceptions such as overflow/underflow,
and nonreproducibility across machines or even across runs
on the same machine. This has led, in part, to numerical bugs
that have caused catastrophic failures [2, 4, 8, 41].

Numerical bugs are those related to either the finite approxi-
mate representation of real numbers, or to mathematical aspects
of the computation. Techniques have been proposed to estimate
roundoff error [18, 20, 36], generate inputs that maximize errors
[14], or trigger floating-point exceptions [11], and to detect
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accuracy [9, 12, 45] and instability problems [10, 26]. However,
there is a gap of knowledge in understanding the characteristics
of numerical bugs in real-world numerical software. What are
the most common numerical bugs? How prevalent are these
bugs? Are existing tools capable of detecting them? How are
such bugs fixed? Are existing program repair tools suitable
to fix them? This paper takes a first step towards answering
these questions by conducting the first comprehensive study of
real-world numerical bug characteristics. The goal of this paper
is to study the causes, symptoms, and fixes of numerical bugs
in numerical libraries, and provide a high-level categorization
that can serve as a guide for researchers to develop tools for
finding and fixing numerical bugs.

Empirical studies of bug characteristics have been conducted
in the past to learn about concurrency bugs [27, 33], perfor-
mance bugs [23, 40], and error handling bugs [13, 16], among
many others. These studies have revealed patterns for both bug
detection and bug fixing. To the best of our knowledge, no
study thus far has focused on numerical bugs, or has considered
inspecting numerical libraries, despite the reputation of being
particularly subtle and error prone.

We faced a number of challenges while conducting this
study. First, numerical bugs are not as numerous in general-
purpose applications, which motivated us to focus our search
on numerical libraries, in particular, NumPy, SciPy, LAPACK,
the GNU Scientific Library (GSL) [5], and Elemental [37].
Second, examining bugs from these libraries was particularly
challenging due to three main reasons: (1) the libraries use
distinct version control systems and bug tracking systems (if
any), (2) the libraries range from 7 to 25 years old, thus
not all bugs are documented in the same manner, (3) the
libraries are implemented in several different programming
languages (Python, C/C++, and Fortran,) often with several
languages involved in the same library. Finally, we found
that, in many cases, examining and classifying numerical bugs
required significant domain knowledge, and understanding of
the code under inspection.

We identify and carefully examine a total of 269 numerical
bugs. We propose to categorize numerical bugs into accuracy
bugs, special-value bugs, convergence bugs, and correctness
bugs. We find that correctness bugs are the most frequent
(37%) in our dataset, followed by special-value bugs (28%),
convergence bugs (21%), and accuracy bugs (14%). We discuss
their characteristics, including common symptoms and fixing



strategies, and present real-world examples. Finally, based on
our findings, we discuss new research directions to develop
tools to improve the reliability and efficiency of numerical
software.

This paper makes the following contributions:
• We identify and examine 269 real-world numerical bugs

found across five widely-used numerical libraries: NumPy,
SciPy, LAPACK, GNU Scientific Library (GSL), and
Elemental (Sections III and IV).

• We present a categorization of numerical bugs, and discuss
their symptoms and fixes (Section IV).

• We discuss new directions to test and analyze numerical
programs (Section V).

The rest of the paper is organized as follows. Section II
presents background on floating point, Section VI discusses
related work, and Section VII concludes.

II. FLOATING POINT PRELIMINARIES

Floating point is the most common representation of real
numbers. Unfortunately, floating point requires navigating many
subtle tradeoffs and inevitably introduces semantics that differ
from those of the reals. Indeed, many of the difficulties faced
by numerical programmers are inherent in the semantics of
floating point. Here we review the IEEE 754 standard [1] for
floating point and its semantics.

A floating-point value is one of the following:
• A number represented as scbq where s is the sign (±1),

c is the coefficient or significand, and q is the exponent.
The base or radix b is usually 2 (binary), though the
standard also describes a base 10 (decimal) representation.
The significand is represented in the same base. Binary
formats range in size from half precision (16 bits) to
octuple precision (256 bits) in power-of-two bit widths.
Most computations are carried out in single (32 bit) or
double (64 bit) precision in practice.

• The infinities ±∞ representing infinite quantities. The
sign of an infinity will correspond to the signs of the
operands used to produce it, i.e., 1/0 and −1/− 0 yield
∞ while −1/0 and 1/− 0 yield −∞.

• The NaN value representing a result that is not a
representable number, such as the result of an attempt to
take the square root of a negative number. NaNs generally
propagate through computations once they occur, and
come in quiet and signaling varieties to implement sensible
exception-generating behavior given this propagation.

Because the significand is scaled by a function of the
exponent, the absolute precision of representable numbers
varies with the exponent over their range. The width of the
interval enclosed by a number with its last significand bit set
to zero and the same number with its last significand bit set
to one is called a Unit in the Last Place or ULP.

Overflow, underflow, and subnormal numbers. Results
of computations that exceed the greatest representable number
in magnitude in the current precision are said to overflow, and
those that fall between zero and the smallest representable
nonzero number are said to underflow.

TABLE I
FLOATING-POINT EXCEPTION BEHAVIOR

Exception Condition Default
Result

Underflow Result between smallest
normal number and zero

subnormal
number

Overflow
Result larger than largest
representable number in
magnitude

±∞

Inexact Result was not exactly rep-
resentable

Rounded
result

Invalid
Result was indeterminate
or not representable as a
number

NaN

Divide by zero Finite, nonzero number is
divided by zero ±∞

A subnormal number uses an exponent of zero to indicate
that the exponent is the lowest representable and that the
significand contains leading zero bits. This convention allows all
remaining precision in the significand to be gradually exhausted
as representable numbers approach zero.

Roundoff and truncation errors. Converting from a higher
to a lower precision requires truncating the representations of
the significand and exponent to the lengths allowed by the
lower precision, which reduces both the available dynamic
range and precision. The loss of precision is called truncation
error while the loss of dynamic range can result in overflow.

Roundoff error is the consequence of needing to express
the result of an operation in terms of representable numbers,
which due to varying absolute precision across the representable
range and other effects incurs errors even for operations on
numbers that are themselves representable. Roundoff error of
basic arithmetic operations is specified to be at most one-half
of an ULP, though some implementations that favor speed
(such as GPUs) violate this requirement.

Floating-point exceptions. Table I shows a summary of the
floating-point exceptions. An underflow exception occurs when
a result is too small to be represented by a normal number, while
an overflow exception occurs when the result of an operation
is too large to be represented. An inexact exception occurs
when the result of a floating point operation was rounded. An
invalid exception occurs when an indeterminate form, such
as 0/0 is evaluated. A divide by zero exception occurs when
division by zero is attempted. The environment may choose
to mask exceptions, in which case the appropriate subnormal
numbers, infinities or NaNs are used to represent the results
and no exception is raised.

Catastrophic cancellation. Subtracting two nearly equal
numbers means that most of the bits in their representations
will cancel, incurring a large risk that the result will denormalize
(underflow). The resulting approximation error will then
propagate through the rest of the computation.

Two notable techniques intended to address the difficulties
in dealing with the many undesired behaviors that can arise
in computing with IEEE floating point and to track the error
that accumulates in the course of computation are interval



arithmetic, standardized as IEEE 1788 in 2015 [22] and unum
arithmetic [21]. Interval arithmetic represents a compact set of
real numbers by its bounds, which allows tracking the set of
possible solutions computed by a program, whose size measures
the error. Unum arithmetic is related, and uses representations
that partition the real line into exactly representable points
and open sets between them. In addition to building error
tracking into the representations, unum arithmetic improves
the semantics of operations involving infinities or NaN versus
IEEE 754 floating point.

III. METHODOLOGY

This section describes the critera for selecting numerical
libraries and the bugs to be examined, and the threats to the
validity of our study.

A. Selection of Numerical Libraries

We selected five representative numerical libraries for our
study: NumPy, SciPy, LAPACK, GSL, and Elemental. These
libraries are characterized by their maturity (7 to 25 years
old), popularity (used by thousands of projects), and active
development. NumPy and SciPy are Python libraries that
combine Python numerical code with wrappers for low-level
routines written in C and Fortran, targeting general numerical
and scientific computing, respectively. LAPACK is a C/Fortran
library of low-level numerical routines, and a building block
for many higher-level libraries such as NumPy. GSL mainly
implements special functions and probability distributions
essential to scientific computing.

Finally, we searched for public GitHub C++ repositories
using keywords associated with numerical computation. We
ranked the results by number of stars (project popularity).
The Elemental library was ranked first. Elemental is a library
that provides efficient and general linear algebra routines
suitable for numerical analysis, scientific computing, and work
in theoretical mathematics, via support for features such as
arbitrary precision, and large-scale distributed computation.

For each library, Table II shows its language of implementa-
tion, the earliest date for which data is available, whether it
is hosted in GitHub, bug tracking system used, current size
(LOC), number of commits, contributors, and releases.

B. Selection and Characterization of Numerical Bugs

We chose to examine bug reports (as opposed to commits)
to have access to more bug information that includes original
reports from users and developer discussions. We imposed a
few requirements on our bug report selection to include bugs (1)
confirmed by developers (e.g., status is closed), (2) considered
important (e.g., bug fix is available), and (3) more likely to be
numerical bugs.

NumPy, SciPy, and Elemental are hosted on GitHub, and use
GitHub’s integrated issue tracking system. This is often used
by developers to track bugs, enhancements, and other tasks.
Additionally, it includes GitHub pull requests. Pull requests
are used by developers to contribute code (after review and
approval) to a repository. LAPACK, by contrast, hosted its own

development before version 3.6.1, when it was migrated to
GitHub (adopting GitHub’s issue tracking system). Thus, there
are two sources of bug reports for LAPACK, (1) the netlib
page, which lists the bugs filed between LAPACK 3.0 (released
in 2000) and LAPACK 3.6.1 (released in 2016); and (2) the
GitHub repository’s issue tracker since LAPACK 3.6.1. We
refer to these as LAPACK1 (before GitHub) and LAPACK2
(after GitHub) through the rest of the paper. Finally, GSL
maintains a Savannah bug tracking system.

We found that all libraries, except for LAPACK1 and GSL,
make use of labels to classify issues. In our selection, we filtered
out any issues with labels related to build issues, documentation
issues, and feature requests.

After filtering out open issues, issues without patches,
and issues without relevant labels, the number of potentially
interesting issues for NumPy and SciPy was still too large for
manual inspection. Thus, we applied two additional filters to
these projects to further refine our selection. First, we searched
issue titles and descriptions for the following keywords: nan,
exception, overflow, underflow, infinity, infinite, precision,
unstable, instability, ringing, unbounded, roundoff, truncation,
rounding, diverge, cancellation, cancel, accuracy, accurate.
Second, we randomly sampled from the resulting set of issues.

We manually examined the selected bugs by reading their
descriptions, comments, and any associated commits or pull
requests to verify that they were numerical bugs of interest
to our study. Then, we made a second pass through all bugs
that passed this final selection criterion, and classified them
according to the symptoms they displayed and the strategies
used to implement their fixes.

C. Threats to Validity

Internal Validity. Our findings depend entirely on the set
of bugs we examine. Thus, we ensured that the relevance of
the initial bug selection was as high as possible by applying
several filters. First, we made sure the issues and pull requests
we selected were real bugs by choosing only accepted/closed
issues (except for GSL where, due to limited data, we also
examined issues that were open, but manually assured they
had been confirmed before including them). Second, when
available, we used labels from the project bug tracker as
part of the selection criteria to ensure that we examined bugs
considered important by project developers. Third, because we
are also interested in bug fixing, we selected bugs referenced
by other bugs or commits when possible, skewing our selection
towards bugs with associated patches. Fourth, if the number of
selected issues was too large for manual inspection, we used
keywords indicative of numerical problems to select those bugs
most likely to be relevant. Finally, each bug was inspected
independently by each author of this paper.

External Validity. The results presented in this paper are
based on only five numerical libraries, requiring special atten-
tion to select a representative sample to make generalization to
other bugs in other software justified. To address this challenge,
we selected representative, mature, and widely-used numerical
libraries. Our selection includes libraries implemented in



TABLE II
NUMERICAL LIBRARY INFORMATION

Library Language Start Date GitHub Bug Tracker LOC # Commits # Contributors # Releases

NumPy Python Dec 16, 2001 Y GitHub 15,366 15,731 512 125
SciPy Python Jan 28, 2001 Y GitHub 823,446 17,012 479 91
Elemental C++ Mar 14, 2010 Y GitHub 778,156 3,721 23 13
LAPACK1 C/Fortran May 31, 2000 N Website 1,613,856 NA 60 17
LAPACK2 C/Fortran Oct 26, 2008 Y GitHub 1,776,339 1,249 19 3
GSL C/C++ Dec 17, 2007 N Savannah 278,617 5,596 15 21

TABLE III
NUMERICAL LIBRARY ISSUES AND PULL REQUESTS

Issues Pull Requests

Library All Closed w/Patch Label Inspected All Closed w/Patch Label Inspected Total Insp

NumPy 5096 3745 1335 682/195 80 3912 3722 3172 431/63 20 100
SciPy 4093 3198 885 561/170 80 3252 3088 2667 153/39 20 100
Elemental 123 85 18 17 85 107 100 85 81 100 185
LAPACK1 148 141 135 - 135 - - - - - 135
LAPACK2 59 45 - 31 31 81 79 - 59 59 90
GSL 218 116 47 - 218 - - - - - 218

Total 9737 7330 2420 1291 629 7352 6989 5924 724 199 828

TABLE IV
CATEGORIZATION OF NUMERICAL BUGS

Library Accuracy S-Values Converg. Correctness Total

NumPy 5 16 0 3 24
SciPy 8 27 6 30 71
Elemental 0 0 0 9 9
LAPACK 11 11 11 9 42
GSL 14 22 39 48 123

Total 38 76 56 99 269

several of the most commonly used programming languages
for numerical code and addressing a comprehensive range of
subtypes of numerical code at levels of abstraction from low-
level arithmetic and linear algebra to higher-level, large-scale
scientific computing and number theory.

IV. NUMERICAL BUG STUDY

The main purpose of this numerical bug study is to answer
the following research questions:
R1. How frequent are numerical bugs?
R2. How can we group numerical bugs into categories that

share common causes and patterns, and how frequently
do bugs in each category occur?

R3. What other characteristics of numerical bugs can we
identify to inform building tools?

We examined a total of 828 bugs (issues and pull requests)
from five numerical libraries (NumPy, SciPy, Elemental,
LAPACK, and GSL). Table III lists the total number of issues,
and pull requests (PRs) per library. The column “Closed” refers
to the number of issues/PRs with status closed. The column
“w/Patch” indicates the number of closed issues/PRs that include
patches, and the column “Label” indicates the number of closed

issues/PRs with patches that were selected based on their labels.
For SciPy and NumPy we provide two numbers. The second
number is the number of labeled issues/PRs in which relevant
numerical keywords (see Section III) were found. From these,
we randomly selected 80 issues and 20 PRs from each of
NumPy and SciPy. We inspected all 218 bug reports for GSL,
and all closed 85 issues and 100 PRs for Elemental. In total,
we inspected 629 issues and 199 PRs. We use issues/PRs and
bugs interchangeably in the rest of this paper.

We found 269 numerical bugs in the 828 bugs inspected, and
developed a categorization of numerical bugs that consisted
of four groups: accuracy, special value, convergence, and
correctness. Table IV shows the distribution of each kind of
bug across the five libraries studied. Next we describe the
characteristics of each bug category.

Finding 1: 32% of the bugs examined are numerical bugs. Based
on our observations, we propose four categories for numerical
bugs: accuracy, special value, convergence, and correctness.

A. Accuracy Bugs

We classified bugs as accuracy bugs when precision loss
due to rounding or truncation errors led to an incorrect result.
Out of the 269 numerical bugs, we found 38 accuracy bugs
across four numerical libraries. These bugs were found mostly
in decomposition and eigenvalue computation routines in
LAPACK, and in the core components of GSL, Scipy, and
NumPy. We found that accuracy bugs often fell into one of
three subcategories:

(1) Insufficient Precision Data Type. To determine the
precision of a variable one must take into account the range of
values to be stored. While using too much precision can cause
performance degradation and/or increase in memory usage,
using too little precision can cause precision loss that may lead



>>> import numpy as n
>>> a = n.ones((1000,1000),dtype=n.float32)*132.00005
>>> a.min()
132.000045776
>>> a.max()
132.000045776
>>> a.mean()
133.96639999999999

Fig. 1. NumPy issue #1063: tests revealing accuracy bug due to insufficient
precision data type.

double complex hyp0f1_cmplx(double v, double complex z):
...

+ double complex t1, t2

# both v and z small: truncate the Taylor series
- if zabs(z) < 1e-6*(1.0 + fabs(v)):
- return 1.0 + z/v + z*z/(2.0*v*(v+1.0))
+ if zabs(z) < 1e-6*(1.0 + zabs(v)):
+ t1 = 1.0 + z/v
+ t2 = z*z / (2.0*v*(v+1.0))
+ return t1 + t2

Fig. 2. SciPy issue #6368: bug due to an inaccurate arithmetic expression.

to incorrect results. Fig. 1 illustrates an example of an accuracy
bug due to insufficient precision data type found in the NumPy
library. There, the average of an array is well outside of the
range between its minimum and maximum elements. This is
due to the accumulation of roundoff errors in the summation
of the array elements. The suggested fix proposes to use higher
precision for the variable that stores the sum. However, some
developers argued that higher precision would be too expensive
to use, and the issue was closed without applying the fix. The
bug is still present in the current version of the library.

(2) Inaccurate Arithmetic Expressions. Floating-point arith-
metic expressions must be carefully crafted to minimize the
generation and propagation of roundoff errors. Fig. 2 shows
an example where the order in which arithmetic operations
are computed leads to precision loss. The bug is fixed by
introducing two temporary variables and breaking the original
arithmetic expression into three separate expressions to enforce
the required order of computation. Fig. 3 shows another exam-
ple: two expressions that suffer from catastrophic cancellation
are replaced with different but equivalent expressions.

(3) Ill-Conditioned Problem. When a large numerical error is
found in a result, the issue may be inherent to the problem, as it
would appear regardless of the algorithm used. The condition
number of the problem is the key to make this distinction.
A large condition number indicates that the problem itself is
sensitive to numerical errors.1 Fig. 4 shows an example of
an ill-conditioned problem. After examining the computation
order of an expression as shown in Fig. 2, the developers
discussed the problem further and recognized that the problem
is ill-conditioned – its condition number is much larger than

1The condition number measures how sensitive a result is to small changes
in the input. A problem is ill-conditioned when a small change in the input
leads to a large change in the output, magnifying the impact of errors.

def _cdf(self, x):
- return 2 * (1 - _norm_cdf(1 / sqrt(x)))
+ # Equivalent to 2*norm.sf(sqrt(1/x))
+ return special.erfc(sqrt(0.5 / x))

def _ppf(self, q):
- val = _norm_ppf(1 - q / 2.0)
+ # Equivalent to 1.0/(norm.isf(q/2)**2)
+ val = -special.ndtri(q/2)

return 1.0 / (val * val)

Fig. 3. SciPy issue #3545: bug due to inaccurate expressions.

scipy.special.hyp0f1(v, z)
Confluent hypergeometric limit function 0F1.

Parameters:
v, z : array_like

Input values.
Returns:

hyp0f1 : ndarray
The confluent hypergeometric limit function.

-------------------------------------------------------
The problem is ill-posed: the condition number is
|dF/dz| * |z|/|F| ∼ 1/|v| >> 1 at v=z<<1. Small
relative changes in input values cause large relative
changes in output.

Fig. 4. SciPy issue #6368: accuracy bug due to ill-conditioned problem.

1 when v is much smaller than 1. High precision data types
would be necessary to achieve correct behavior.

Detection and Fixing Automation. In the bugs we exam-
ined, backward error analysis was often used in the detection of
accuracy bugs. For example, to test a division on floating-point
numbers, q, r = divmod(a, b), the accuracy of the quotient q
and remainder r can be determined by comparing q ∗ b + r
and a. A similar technique can be used to test decomposition
and eigenvalue computation routines. In these cases, the two
resulting matrices should be orthogonal in theory. A problem
is revealed if their product greatly deviates from the unit
matrix. Such techniques could be used for bug detection. Input
generation is another important aspect in detecting accuracy
bugs, however we did not find any mention of input generation
when examining the bug reports. Finally, we found that the
first two subcategories suggest strategies for fixing accuracy
bugs: switching to higher precision, and transforming arithmetic
expressions to improve their precision.

Finding 2: Accuracy bugs are the least frequent numerical bugs
in our dataset (14%). Techniques such as backward error analysis
could be used to automatically detect these bugs. Furthermore,
we identify two common strategies to fix accuracy bugs: using
higher precision, and reordering arithmetic expressions. Input
generation to detect accuracy bugs remains a challenge.

B. Bugs Related to Special Values

In this paper, we refer to signed zero, subnormal numbers,
infinities, and NaNs (Not a Number) as special values. Unlike
normalized floating-point numbers, special values are given a
special encoding in the floating-point representation system.
Moreover, arithmetic operations on special values follow
irregular rules with subtle implications. We denote a bug as



>>> import numpy as np
>>> np.max(np.array([-1, np.nan, -2]))
-2

Fig. 5. NumPy issue #1511: test revealing a NaN bug in function max.

GESVD BDSQR LASQ3
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Fig. 6. LAPACK bug #97: an example of a special-value bug. The initial
matrix IN has all elements set to 1, the singular value decomposition routine
of LAPACK, GESVD eventually produces a matrix that contains NaNs.

related to special values when its root cause is related to
computation involving special values. For example, the program
fails with NaN inputs, or it allows precision loss to proceed
beyond the appearance of subnormal numbers and producing
NaNs later in the computation. We found that 76 out of 269
numerical bugs are related to special values. These bugs are
distributed widely in different library components, and can
cause an algorithm to fail in various ways: producing NaN
values, producing incorrect results, causing infinite loops, etc.
Next, we describe two kinds of bugs in this category.

(1) Missing NaN Checks. A NaN checking procedure checks
the floating-point inputs explicitly for NaN values. Depending
on the program’s policy to deal with NaNs, inputs that
contain NaNs are either rejected, ignored, or masked. Some
disagreement is observed among library developers with respect
to whether NaN checks should be enabled or not for certain
inputs. While enabling NaN checks makes algorithms more
robust, these also add runtime overhead. As a result, NaN
checks are often added until a function is reported to be buggy
on NaN inputs. Fig. 5 shows a test that reveals such a bug
in the max function from NumPy. The function returns an
incorrect result when the input array contains a NaN value. In
the example, the function returns −2 as the maximum value
in the array [−1, np.nan,−2]. This is due to the fact that any
comparison against a NaN evaluates to false. In this case,
max checks whether −1 is larger than NaN, which evaluates
to false, thus NaN is larger. Then, it checks whether NaN is
larger than −2, which also fails, and −2 is returned. To fix
this bug, a NaN check is added to check the array for NaNs.
Furthermore, the function is modified to immediately return a
NaN if the input array contains a NaN value.

(2) Overflow/Underflow. Another important type of special-
value bug is overflow/underflow, which can lead to NaNs. These
bugs are caused by a variety of problems, and often require
domain specific knowledge for their detection. Fig. 6 describes
an underflow bug in the LAPACK library that results in NaNs.
A user reported NaN values in the result when calling routine
GESVD to compute the singular value decomposition of a

matrix with all elements set to 1. The input matrix leads to
denormalized numbers when bidiagonalized in GESVD. This
matrix is eventually passed to routine LASQ3. In LASQ3, T is
computed by taking half of (Z(nn−7)−Z(nn−3))+Z(nn−
5), where nn is a local scalar, underflowing and becoming 0.
NaN values are then produced in S when dividing T . A fix for
this bug is proposed by strengthening the conditions for further
computation on T , i.e., avoiding the computation of S when
T underflows. This fix required domain specific knowledge.

Detection and Fixing Automation. NaNs are designed
to denote the results of “invalid” floating-point operations,
e.g., 0/0, without interrupting execution. Furthermore, NaNs
are often used to represent missing data, which can lead to
ambiguity. Both uses cause errors due to the idiosyncratic
behaviors of computations on NaNs and other special values,
and their non-local propagation. An approach to detect special-
value bugs is to feed NaN inputs to functions to observe where
and how they subsequently fail. This could be used to reveal
problems with NaN checks or their absence. On the other
hand, generating inputs to reveal underflow/overflow errors is,
however, difficult to automate, as it requires domain-specific
knowledge. Finally, the main challenge in automating bug
fixing is to determine when to check for special values, and
what to do in their presence.

Finding 3: We find that 28% of the numerical bugs are
special-value bugs. These bugs mainly involve NaN checks
and overflow/underflow conditions. An initial approach to detect
missing NaN checks is to use NaN inputs. Generating inputs to
expose overflow/underflow remains a challenge.

C. Convergence Bugs

We define convergence bugs as bugs where an iterative
or series approximation diverges or converges too slowly
due to numerical problems such as magnified roundoff or
truncation errors. This is related to numerical instability, i.e., the
output is sensitive to small variations in inputs or intermediate
quantities. Consequently, small errors introduced by floating-
point approximations drive the output far from the correct
value. This can be complicated by interactions with instability
around conditional tests, where vanishingly small differences
in a quantity involved in a test can cause different control paths
to be followed. An example is the termination of a loop that
intends to continue an iterative approximation until an error
estimate goes below a given error tolerance.

We find that 56 out of 269 numerical bugs correspond to
convergence bugs; 39 were found in GSL, 11 in LAPACK, and
6 in SciPy. We did not find any convergence bugs in the sampled
issues from NumPy or Elemental. This was unremarkable
in the case of NumPy because NumPy focuses mainly on
low-level linear algebra data structures, and operations on
these are delegated to wrapped algorithms from other packages.
Elemental includes support for arbitrary-precision arithmetic.
Arbitrary-precision arithmetic avoids convergence issues by
scaling precision according to the demands at each point in a
computation.



Convergence bugs fall into one of the following scenarios:
• The approximation algorithm uses a problematic approxi-

mation formula that yields a wrong result.
• Numerical issues in an iterative approximation cause an

infinite loop that leads to a program crash.
• Special values such as NaNs are involved in divergent

behavior. We classify this as a convergence problem
yielding a wrong result rather than a special-value issue
because it is more specific to do so.

An example of a convergence bug is illustrated in Fig. 7. A
user noticed an error larger in magnitude than the result itself in
the output of the hypergeometric special function in the regime
of large negative a, positive b, and large positive x parameters.
Another user noted that the Kummer transformation used for
x < 100 returned correct results for larger x as well, and
proposed a fix to use it by default in this regime for all values
of x, which was accepted.

In general, the symptom revealing a convergence bug was
usually the output of wrong results. Occasionally, failure to
converge would result in a non-terminating loop, hanging the
program, which we classified as a crash.

Detection and Fixing Automation. Because failures to
converge are due to issues in the quality of a numerical
approximation, these require domain-specific knowledge to
address, and fixes usually involve using a better approximation
technique. In principle, running programs with arbitrary-
precision arithmetic could help to automate finding such issues.
Since these bugs are among the most common in scientific
computing packages that implement special functions, and
probability distributions, such a tool could be highly valuable.
Unum arithmetic could be especially interesting in this context
because it combines aspects of interval-based error tracking
with adaptive precision.

Finding 4: We found that 21% of the numerical bugs are con-
vergence bugs. Diagnosing convergence bugs requires domain-
specific knowledge. Adaptive use of interval and arbitrary-
precision should be investigated further. In this context, Unum
arithmetic is especially interesting since it combines a form of
interval-based error tracking with adaptive precision.

D. Correctness Bugs

A correctness bug is caused by any error in the imple-
mentation of an algorithm that have to do primarily with its
mathematical or algorithmic structure. Correctness bugs are the
most type of numerical bugt; 99 out of 269 numerical bugs are
correctness bugs. Correctness bugs have the greatest variety of
all types, and ranged from typographical errors in transcribing
a formula from a reference, to using an approximation formula
for a function outside the function’s domain of definition, to
errors due to compiler optimizations violating the assumed
semantics of mathematical operations.

To differentiate algorithmic correctness bugs that are specific
to numerical code from correctness bugs in general-purpose
code, we considered only bugs dealing with mathematical
aspects of the computation, or at least with the use of data types

int gsl_sf_hyperg_1F1_e(const double a, const double b,
const double x,

gsl_sf_result * result) {
...

- else if(a < 0.0 && fabs(x) < 100.0) {
+ else if(a < 0.0 && fabs(x) < 2*GSL_LOG_DBL_MAX) {

/* Use Kummer to reduce it */
/* to the generic positive case... */
gsl_sf_result Kummer_1F1;
int stat_K = hyperg_1F1_ab_pos(b-a, b, -x,

&Kummer_1F1);
int stat_e = gsl_sf_exp_mult_err_e(x,

GSL_DBL_EPSILON * fabs(x),
Kummer_1F1.val,
Kummer_1F1.err,
result);

return GSL_ERROR_SELECT_2(stat_e, stat_K);
}
...

}

Fig. 7. GSL issue #28718: an example of a convergence bug.

or structures specific to numerical computation. For example,
an error in a branch condition that resulted in the use of the
wrong approximation formula for a special function at the
given point in its domain would be classified as a numerical
correctness bug, while an error in a branch condition that
resulted in the premature return of an uninitialized value would
not be counted as a numerical correctness bug. For another
example, a concurrency bug arising in distributing computation
over a matrix that considers the structural features of that
matrix would be considered a numerical correctness bug, while
a concurrency bug in general would not be.

Correctness bugs were most prevalent in SciPy, and GSL.
We observe that SciPy and GSL both focus on implementing
special functions and probability distributions used for scientific
computing, and the numerical correctness bugs we found in
them occur overwhelmingly in these features.

We classified correctness bugs into the following subcate-
gories:

• Errors in the initialization or updates in iterative solvers
that resulted in problems other than a failure to converge
to the correct result.

• Errors in conditional tests that resulted in the wrong
function approximation being used for the given point in
the domain.

• Errors involving vector and matrix data data types, such
as element type errors and incorrect array dimension.

• Violations of assumed numeric semantics due to compiler
optimizations.

Fig. 8 shows an example of a numerical correctness bug
related to error initialization found in SciPy. The bug is found in
code wrapping a call to a Fortran routine for Sequential Least-
Squares Programming, where there is an erroneous attempt
to use dummy values of ±1e12 for constraint bounds passed
to the solver. This resulted in scaling problems in the solver
due to the large range of the constraints and also precluded
finding solutions outside those bounds even when they existed
in the given problem. The underlying Fortran routine in fact
supported using NaN in the place of bounds for unbounded



def _minimize_slsqp(...):
...

- # filter -inf, inf and NaN values
+ # Mark infinite bounds with nans;
+ # the Fortran code understands this

infbnd = ~isfinite(bnds)
- xl[infbnd[:, 0]] = -1.0E12
- xu[infbnd[:, 1]] = 1.0E12
+ xl[infbnd[:, 0]] = np.nan
+ xu[infbnd[:, 1]] = np.nan

Fig. 8. SciPy pull request #6024: an example of a correctness bug.

problems, and once that fix was made (and an array bounds
error introduced by the initial fix was then addressed) the
routine worked as expected.

Detection and Fixing Automation. Correctness bugs were
most often discovered through the symptom of an incorrect
result being returned. The majority of these were discovered
by users noticing incorrect results in the course of their work
and comparing the library results to other implementations of
the same feature, usually in less efficient but more rigorous
packages that include such features as arbitrary-precision arith-
metic, for example PARI/GP[3]. This suggests that differential
testing against such a package could be an effective bug-finding
approach. A minority were discovered through test cases failing.
These were often platform or build specific, and were the fault
of the compiler violating semantic assumptions implicit in the
code under certain conditions. This suggests the approach of
using a database of platform, build, and environment dependent
behavior to scan code for instances of patterns that differ in
their behavior across targets.

In general, correctness bugs required the most domain-
specific knowledge of all types to fix, given that they were
most related to the mathematical structure of the problem at
hand and the idiosyncrasies of the language and environment.

Finding 5: Correctness bugs are the most common numerical
bugs, with 37% of numerical bugs falling into this category.
Correctness bugs are extremely challenging to detect. Differential
testing may be a good method to detect these bugs.

E. General Bug Symptoms and Opportunities for Automation

We identified three common symptoms of numerical bugs:
wrong results, crashes, and bad performance. Table V shows
their distribution across libraries. We found that the majority of
numerical bugs (77%) are revealed by producing wrong results.
This is followed by crashing the program (13%), and causing
bad performance (10%). For all libraries except Elemental,
producing wrong results was the most common symptom of
a numerical bug. The second most common symptom was
program crashes for NumPy and SciPy, and bad performance
for Elemental2, LAPACK, and GSL.

We also classified bugs according to whether detection or
fixing could be automated. Table VI shows our classification,

2In the case of Elemental, this difference may be due in part to its use of
arbitrary precision arithmetic, which tends to convert precision loss problems
into performance problems by dynamically extending the representation length
on demand.

TABLE V
BUG SYMPTOMS

Library Wrong Results Crashes Performance Total

NumPy 19 4 1 24
SciPy 51 19 1 71
Elemental 0 4 5 9
LAPACK 30 2 10 42
GSL 106 7 10 123

Total 206 36 27 269

and the distribution across libraries. “Pattern” describes bugs
that could be detected or fixed by applying a simple pattern,
“Analysis” refers to bugs that could be potentially detected
or fixed automatically after non-trivial analysis of the code,
and “Domain Specific” are bugs that require domain specific
knowledge to be detected or fixed. We found that very
few bugs (4%) can be detected using simple patterns (e.g.,
matching small AST fragments to repair problematic order of
operations). However, we found that a considerable number
of bugs (29%) might be detected automatically with program
analysis techniques (e.g., dataflow analysis to aid in estimating
output error from intermediate roundoff errors). In the case of
automated bug fixing, fewer bugs could be fixed by applying
patterns (2%), or analyzing code (17%); a large majority of
fixes were domain specific. Note that we considered only 183
bug fixes in our study.

Finding 6: The most common symptom for numerical bugs
is wrong results, which is observed in 77% of the bugs. This
is followed by crashes with 13%, and bad performance with
10%. About 80% of the numerical bugs required domain specific
knowledge to be fixed.

V. LESSONS LEARNED

(1) Frequency of Numerical Bugs. Even in the projects we
examined, which focus exclusively on numerical code, 32% of
the reported issues were numerical bugs. We speculate that this
may be due to the relative maturity of these projects, and that
the essential functionality is already in place and thoroughly
debugged. Because of the widespread use and maturity of these
libraries, and their tendency to be implemented by highly-
skilled experts, we would also expect that the bugs most
relevant to this study were discovered and fixed early in the
project lifecycle, if they appeared at all, thus we may need to
look for historical bug data that far predates the migration
of these projects to GitHub, if they appear on GitHub at
all. Finally, numerical bugs can also be present in clients
of numerical libraries, and other applications (e.g., [28]). It
would be interesting to investigate whether our findings apply
to code other than numerical libraries.

(2) Current Tool Usage. We did not find any indication
during our manual inspection that bug detection tools were
used by developers or users. In most cases, users seemed to
find inputs that exposed unexpected behavior almost by chance.
There was also no indication that developers of these libraries



TABLE VI
OPPORTUNITIES FOR AUTOMATION

Bug Detection Bug Fixing

Library All Pattern Analysis Domain Specific All Pattern Analysis Domain Specific

NumPy 24 3 21 0 20 1 9 10
SciPy 71 1 9 61 68 1 2 65
Elemental 9 0 4 5 9 0 3 6
LAPACK 42 1 14 27 42 0 13 29
GSL 123 7 29 87 44 2 5 37

Total 269 12 77 180 183 4 32 147

had used any existing tools to test the libraries. As future work,
it would be interesting to find whether specific existing tools
(e.g., tools that find divergences [15]) are able to find the bugs
we identified in this study.

(3) Usage of Patterns. Although we identified a small number
of bugs that could be detected or fixed by applying simple
patterns such as expression rewriting, we believe that there is
still promise on applying such patterns to other code bases,
in particular, to the numerous clients of these libraries. Also,
we could apply those patterns to detect unknown bugs in the
libraries considered in this study. Tools such as Herbie [36]
and Precimonious [38] could be applicable in these scenarios.

(4) Testing and Input Generation. In our manual inspection,
we found a few users who determined that a library was
producing an incorrect result because they had performed
the same numerical operation in a more rigorous but less
efficient library, and found a mismatch in the results. This
suggests that differential testing of numerical libraries could
be particularly beneficial for numerical software for which
oracles are often difficult to obtain. This would be particularly
useful to detect many of the bugs that we classified as requiring
domain-specific knowledge (the majority in this paper). Even
in the absence of a known-good implementation, differential
testing of numerical libraries would help to detect many of
the most difficult bugs by simply finding mismatching results
across different numerical libraries, taking advantage of the
tendency of different implementations to fail in different ways
in challenging tasks. We also found that techniques for input
generation (e.g., [14, 45]) are in great need to uncover many
of the problems described throughout this paper.

(5) Program Analysis. Program analysis tools could be devel-
oped to automatically detect a good number of numerical bugs,
including special-value bugs, accuracy bugs, and convergence
bugs. In particular, current challenges in the estimation of
roundoff errors (e.g., treatment of loops in [17, 42]) present
interesting problems that will have a great impact on being
able to find a variety of numerical bugs. In the case of dynamic
tools, the main challenge will be to produce results that can be
generalized to many program runs while imposing low runtime
overhead. A delicate balance between static and dynamic
approaches is needed.

(6) Automated Bug Fixing. As with other kinds of bugs,
automated bug fixing of numerical bugs seems to be the most
challenging. The first step would be to apply the state-of-the-art

(e.g., [31, 32, 44]) in automated bug repair to see if any of the
bugs we identified could be fixed. For certain narrowly-defined
cases, simple pattern matching may provide some low-hanging
fruit in the meantime.

VI. RELATED WORK

Empirical Studies. Previous empirical studies have examined
a variety of software systems, and characterized their defects
and associated information on various dimensions [19, 23, 33,
34, 43]. We summarize some of the most related studies that
have inspired our work. A study of performance bugs [23]
examined 109 performance bugs from Apache, Chromium,
GCC, Mozilla, and MySQL, classifying them according to
their root cause, how the bug was introduced, how it was
exposed, how it was fixed, and its location in the code. A
more recent study [40] examined 98 fixed performance bugs
in 16 popular client-side and server-side JavaScript projects,
finding eight common root causes. In our study, we found
that about 10% of numerical bugs have performance-related
symptoms. To the best of our knowledge, previous studies on
performance bugs did not find instances of numerical bugs
causing performance problems.

Similar studies have focused on other aspects of software.
For example, Dietz et al. [19] investigate integer overflow bugs
in C/C++ programs by performing dynamic checking on the
SPEC CINT 2000 benchmarks and also identifying undefined
integer overflows in widely used open source software. Our
study instead investigates floating-point numerical bugs, and in
addition to overflow (and underflow) develops a comprehensive
categorization of bugs empirically. In recent studies (e.g.,
[29, 30, 35]), the authors have developed tools to address
specific bug types using pattern-matching based detection and
correction techniques informed by empirical analyses, which
in part motivated our empirical study.

Tools for Numerical Code. A variety of tools have been
developed to improve the reliability and performance of
numerical applications. For example, techniques have been
devised to estimate roundoff errors. FPTaylor [42] focuses
on providing a tight overapproximate estimate on roundoff
errors by rigorously handling the transcendental functions
using Symbolic Taylor Expansions. Darulova and Kuncak [17]
present a programming model that provides real data type for
programmers and guarantees a sound compilation to finite-
precision implementation that meets the desired precision.



At the same time, a series of dynamic tools have been
developed to test and optimize numerical code. For example,
techniques [14, 45] have been proposed to generate inputs that
lead to large roundoff errors that can be used to test numerical
code. Tools for precision tuning [25, 38, 39] dynamically search
over the types of variables or instructions to find a mixed
precision configuration that (1) produces an accurate result with
respect to an error threshold, and (2) improves performance.
Herbie [36] rewrites floating-point arithmetic expressions with
mathematically equivalent alternatives in order to improve the
accuracy of the computations.

Though promising, the above-mentioned tools, as many
others, remain narrow in scope and have not been adopted
by real-world applications. We hope that our study on real-
world numerical bugs can provide context to improve existing
tools and to inform the design of future tools so that they
engage better with the full depth and breadth of numerical
programming problems in the real world.

VII. CONCLUSIONS

This paper presented the first comprehensive study of real-
world numerical bug characteristics. We examined 828 issues
and pull requests from a diverse set of numerical libraries:
NumPy, SciPy, Elemental, LAPACK, and GSL. From these,
we identified and carefully examined 269 numerical bugs. We
found that numerical bugs can be largely categorized into four
groups: accuracy bugs, special-value bugs, convergence bugs,
and correctness bugs. Correctness bugs, with 37%, comprise
the single most common category, and are also the ones that
require the most expertise. Correctness bugs are followed by
special-value bugs, convergence bugs, and accuracy bugs with
28%, 21%, and 14%, respectively.

We discussed the characteristics of numerical bugs. We found
that the most common symptom for numerical bugs are wrong
results, followed by crashes and bad performance. We discussed
the opportunities to automate detection and fixing of numerical
bugs. While merely using patterns applies to few bugs, there
is still promise in these being applicable to a large number of
libraries and library clients. We found that many bugs could
potentially be detected using program analysis, and that there
may be opportunities in the area of automated bug fixing as well.
As for existing tools, we did not find evidence that suggests
the current use of testing/analysis tools by library developers
or users. Thus, more work is also required to facilitate the
adoption of numerical tools in the real world.
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