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ABSTRACT

Circuit obfuscation is a recently proposed defense mechanism to
protect digital integrated circuits (ICs) from reverse engineering
by using camoulaged gates i.e., logic gates whose functionality
cannot be precisely determined by the attacker. There have been ef-
fective schemes such as satisiability-checking (SAT)-based attacks
that can potentially decrypt obfuscated circuits, called deobfusca-
tion. Deobfuscation runtime could have a large span ranging from
few milliseconds to thousands of years or more, depending on the
number and layouts of the ICs and camoulaged gates. And hence ac-
curately pre-estimating the deobfuscation runtime is highly crucial
for the defenders to maximize it and optimize their defense.

However, estimating the deobfuscation runtime is a challenging
task due to 1) the complexity and heterogeneity of graph-structured
circuit, 2) the unknown and sophisticated mechanisms of the at-
tackers for deobfuscation. To address the above mentioned chal-
lenges, this work proposes the irst machine-learning framework
that predicts the deobfuscation runtime based on graph deep learn-
ing techniques. Speciically, we design a new model, ICNet with
new input and convolution layers to characterize and extract graph
frequencies from ICs, which are then integrated by heterogeneous
deep fully-connected layers to obtain inal output. ICNet is an end-
to-end framework which can automatically extract the determinant
features for deobfuscation runtime. Extensive experiments demon-
strate its efectiveness and eiciency.

1 INTRODUCTION

The considerable high capital costs on semiconductor manufactur-
ing motivate most semiconductor companies to outsource their
designed integrated circuits (ICs) to the contract foundries for fab-
rication. Despite the reduced cost and other beneits, this trend
has led to ever-increasing security risks such as IC counterfeiting,
piracy and unauthorized overproduction by the contract foundries
[11, 15, 19, 20]. The overall inancial risk caused by such counterfeit
and unauthorized ICs was estimated to be over $169 billion per
year [12]. The major threats from the attackers arise from reverse
engineering an IC by fully identifying its functionality by stripping

it layer-by-layer and extracting the unveiling gate-level netlist. To
prevent such reverse engineering, IC obfuscation techniques have
been extensively researched in recent years [1, 26]. The general idea
is to camoulage some gates in an IC so that their gate types cannot
be determined by reverse engineering optically, yet they preserve
the functionality same as the original gates. Such techniques were
highly efective until very recent progress of the attacking tech-
niques based on logical attackers were invented and widely applied
[5]. This is based on the fact that there are limited types of gates
(e.g., AND, OR, XOR) in IC, so the attackers can just brute force
all the possible combinations of types for all camoulaged gates
to ind out the one that functions identically to the targeted IC to
be deobfuscated. As brute force is usually prohibitively expensive,
more recently, eicient methods such as Boolean satisiability prob-
lem (SAT)-based attacks have been proposed which have attracted
enormous attention [10, 14].

The runtime of SAT attack to reverse engineer the IC highly
depends on the complexity of the camoulaged IC, which can vary
from milliseconds to thousands of years or more depending on the
number and layout of camoulaged gates. Therefore, a successful
obfuscation defense is to consume attackers prohibitive amount
of time (i.e., many years) to deobfuscate. However, camoulaging
each gate comes at a heavy cost in inance, power, and space, such
trade-of forces us to search for optimal layout instead of purely
increasing their quantity. This means to select the best set of gates
to be selected for being camoulaged in order to maximize the run-
time for deobfuscating. Although such selection can signiicantly
inluence the deobfuscation runtime, however, until now it is still
generally based on human heuristics or experience, which is seri-
ously arbitrary and suboptimal [7]. This is majorly because it is
unable to łtry and errorž all the diferent ways of obfuscation, as
there are millions of combinations to try and the runtime for each
try (i.e., to run the attacker) can be days, weeks, or years.

To address this issue, this paper focuses on eicient and scal-
able ways to estimate the runtime for an attacker to deobfuscate
a camoulaged IC. This research topic is highly under-explored
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because of its signiicant challenges: 1) Diiculty in characteriz-

ing the hidden and sophisticated algorithmic mechanism of

attackers. Over the recent years, a large number of deobfuscation
methods have been proposed with various techniques [7]. In or-
der to practically beat the defender, methods with more and more
sophisticated theories, rules, and heuristics have been proposed
and adopted. The behavior of such highly-nonlinear and strongly-
coupling systems is prohibitive for conventional simple models (e.g.,
linear regression and support vector machine [2]) to characterize. 2)
Diiculty in extracting determinant features from discrete

and graph-structured IC. The inputs of the runtime estimation
problem is the IC and the selected gates for camoulaging, where
the irst input is a heterogeneous graph while the second is a vector
with discrete values. Conventional feature extraction methods are
not intuitive to be applied to such type of data without signiicant
information loss. Hence, it is highly challenging to intactly for-
mulate and seamlessly integrate them as mathematical forms that
can be input to conventional computational and machine learn-
ing models. 3) Requirement on high eiciency and scalability

for deobfuscation runtime estimation. The key to the defense
against deobfuscation is the speed. The faster the defender can
estimate the deobfuscation runtime for each candidate set of cam-
oulaged gates, the more candidate sets the defender can estimate,
and hence the better the obfuscation efect will be. Moreover, the
estimation speed of deobfuscation runtime must not be sensitive
to diferent obfuscation strategies in order to make the defender
strategy controllable.

This work address all the above challenges, and proposes the
irst generic framework for deobfuscation runtime prediction, based
on graph deep learning techniques. In recent years, deep learning
methods in complex cognitive tasks such as object recognition
and machine translation have achieved immense success, which
motivates the generalization of it into graph-structured data [8].
By concretely formulating ICs and the camoulaged gates as multi-
attributed graphs, this work innovatively leverages and extends
the state-of-the-art graph deep learning methods such as Graph
Convolutional Neural Networks (GCN) [8] to instantiate a graph
regressor. Such end-to-end deep graph regressor can characterize
the underlying and sophisticated cognitive process of the attacker
for deobfuscating the ICs. It can also automatically extract the
discriminative features that are determinants to the estimation of
the deobfuscation runtime to achieve accurate runtime prediction.
After being trained, the prediction based on this deobfuscation
runtime estimator just runs instantly fast by simply performing a
feed-forward propagation process. The major contributions of this
paper are:

• Proposing a new framework, ICNet, for deobfuscation run-
time estimation based on graph deep learning.
• Developing a new multi-attributed graph convolutional neu-
ral network for graph regression.
• Conducting systematical experimental evaluations and anal-
yses on real-world datasets.

We evaluate this proof-of-concept on ISCA-85 benchmark for one
replacement policy and SAT solver [21] that employs lingeling
solver. However, this can be applied to any of the circuits as well
as replacement policies, as the GCN learns the patterns and is not
conined to any circuit or replacement policy or SAT solver.

The rest of the paper is organized as follows. Section 2 reviews
existingwork in this area. Section 3 elaborates a graph deep learning
model for SAT runtime prediction task. In Section 4, experiments on
real-world data. This paper concludes by summarizing the study’s
important indings in Section 5.

2 BACKGROUND AND RELATEDWORK

Here, we discuss the logic obfuscation and SAT attacks followed by
graph convolutional networks and the relevant works.

2.1 Logic Obfuscation and SAT Attacks

Logic obfuscation often referred as logic locking [25] is a hard-
ware security solution that facilitates to hide the IP using key-
programmable logic gates The activation of the obfuscated IP is
accomplished in a trusted regime before releasing the product into
the market, thereby reducing the probability to obtain the secret
coniguration keys by the attacker. During the activation phase, the
correct key is applied to these key-programmable gates to recover
the correct functionality of the IC/IP. Besides, the correct key will
be stored in the IC in a tamper-proof memory.

Although obfuscation schemes try to minimize the probability
of determining the correct key by an attacker, and avoid making
pirated and illegal copies, introducing SAT attack shows that these
schemes can be broken [21]. In order to perform SAT attack, the
attacker is required to have access to the functional IC along with
the obfuscated netlist. The SAT attack irst tries to ind the Dis-
tinguishing Input Patterns (DIP) Xi , which when applied as the
input can produce diferent outputs (Yi ) such that (Y1 , Y2) when
diferent key values are applied (K1, K2). This DIP can then be used
to distinguish the correct and incorrect keys. The number of DIPs
discovered during the SAT-based attack is the same as the number
of iterations needed to unlock the obfuscated design. In each itera-
tion, the constraint is added to SAT solver, until SAT solver cannot
ind a satisfying assignment. This results in inding the correct key.
The SAT-based attack is summarized in the Algorithm 1.

Algorithm 1: SAT-based Attack Algorithm

1: function SAT_Attack(Circuit Cobf , Circuit Corд )
2: i← 0;
3: F1← C(X, K1, Y1) ∧ C(X, K2, Y2); while SAT(Fi ∧ (Y1 ,

Y2)) do
4:

Xd [i]← sat_assignment (Fi∧(Y1 ,Y2));
5: Yd [i]← eval(Xd [i]);
6: Fi+1← Fi ∧ C(Xd [i], K1, Yd [i]) ∧ C(Xd [i], K2, Yd [i]);
7: i← i+1;
8: Correct_Key← sat_assignment(Fi | K1);
9: end function

Diferent SAT-hard schemes such as [23, 24] are proposed Fur-
thermore, new obfuscation schemes that focus on non-Boolean
behavior of circuits [22], that are not convertible to an SAT cir-
cuit is proposed for SAT resilience. Some of such defenses include
adding cycles into the design [13]. By adding cycles into the design
may cause that the SAT attack gets stuck in the ininite loop, how-
ever advanced SAT-based attacks such as cycSAT [28] can extract
the correct key despite employing such defenses.
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To ensure that the proposed defense ensures robustness against
SAT attacks, the defenders need to run the rigorous simulations
which could range as a step to alleviate the need to run the attack
to verify whether the defense is strong enough or not. The work in
[16] utilizes neural network with single-bit supervision to predict
whether a given circuit in Conjunctive Normal Form (CNF) can be
decrypted or not. However, this is limited to determining for few
kinds of SAT-solvers, but cannot be applied to SAT-hard solutions
such as SMT-SAT [27], a superset of SAT attacks. However, with
proposed GCN based predictor, the defender can determine the
deobfuscation time in a single run of GCN, which consumes few
seconds.

2.2 Graph Convolutional Networks

Spectral graph theory is the study of the properties of a graph
in relationship to the characteristic polynomial, eigenvalues, and
eigenvectors of matrices associated with the graph. Many graphs
and geometric convolution methods have been proposed recently.
The spectral convolution methods [4, 8] are the mainstream algo-
rithms developed as the graph convolution methods. Their theory
is based on the graph Fourier analysis [17]. The polynomial approx-
imation is irstly proposed by [6]. Inspired by this, graph convo-
lutional neural networks (GCNNs) ([4]) is a successful attempt at
generalizing the powerful convolutional neural networks (CNNs)
in dealing with Euclidean data to modeling graph-structured data.
Kipf and Welling proposed a simpliied type of GCNNs[8], called
graph convolutional networks (GCNs). The GCN model naturally
integrates the connectivity patterns and feature attributes of graph-
structured data and outperforms many state-of-the-art methods
signiicantly. With rational function, GCN can model non-smooth
signal in spectral domain[3].

3 PROPOSED GRAPH LEARNING BASED SAT
RUNTIME PREDICTION

This section introduces the problem setting, and present the pro-
posed deobfuscation time prediction.

3.1 Problem Setting

First, circuit is modeled as a graph network: G = (V, E,W), where
V is a set of n vertexes, E represents edges andW = [wi j ] ∈

{0, 1}n×n is an unweighted adjacency matrix. A signal x : V → R
deined on the nodes may be regarded as a vector x ∈ Rn . Combi-
natorial graph Laplacian is deined as L = D −W ∈ Rn×n where
D is degree matrix.

Accordingly, we formulate the estimation of running time on IC
as a regression task. Speciically, the model accepts graph structure
along with gate attributes as input, and predict the running time:

Y = f (G,x)Θ, (1)

where f is a function of graph structure G and x that denotes
the attributes of gates such as gate type. Function f can accept
heterogeneous data format for G and x , since G is often represented
using matrix, while x is using vector. Θ indicates the parameters of
normal neural network layers connecting the output of f and the
labeled time Y , such as fully-connected layers. The goal is to learn
a set of parameters of both f and Θ so that the diference between
Y and f (G,x)Θ is minimized.

3.2 ICNet

ICNet is a neural network that is based on graph convolution oper-
ator. As shown in Figure 1, ICNet encodes the obfuscated circuit
on the left hand into two components:

• graph structure G : Complete set of local connection is of-
ten used to represent the graph structure. Typically, a graph
Laplacian is employed, since it contains gate-wise connec-
tion.
• gate attributes x : gate-level information can be encoded
as numerical vector as input feature. Such information could
include gate type, whether it is obfuscated and so on.

By applying the GCN, we can easily build a model to automati-
cally learn the relationship between the circuit and deobfuscation
time. However, the original graph convolutional operator is not
suitable for the circuit, since the graph Laplacian will make the
graph convolutional operator behavior as label propagation, i.e.,
the attributes of each gate are similar to its neighbors. This is called
the smoothness assumption, and it does not it the fact that gate
type or encryption location of each gate does not determine its
neighbors’ related attributes in theory. This issue is because of
graph Laplacian, which counts each node as Ni (i is the index of the
row in graph Laplacian), and counts the weights of its neighbors
as Ni . Consequently, they are canceled out when gate represen-
tation are aggregated using sum, and the model can hardly learn
the relationship between their sum(residues) and labeled time. To
solve this issue, our model employs several policies to enhance the
traditional GCN for circuit learning.

• Graph Representation G = A : our model uses adjacency
matrix A instead of graph Laplacian. This representation
can avoid intrinsic smoothness assumption which is not
compatible with ICs.
• Feature Aggregation(Θf eat ): mean function is a typical
methods for aggregating node feature into single number.
However, mean does not consider the quantity of summed. A
more lexible way is build to neural network to automatically
learn feature aggregation.
• Gate Aggregation(Θдate ): similarly, mean can also be used
to aggregate gate representation into circuit graph repre-
sentation. Due to the complicated real world aggregation,
another neural network is designed to learn the gate aggre-
gation function.

Our model is based on GCN setting[8] which simplify the layer
parameters of graph convolutional operator and applies an ap-
proximate technique to boost the eiciency. Graph convolutional
networks(GCNs), as state of the art deep learning method for the
graph, focus processing graph signals deined on undirected graphs

As L is a real symmetric positive semideinite matrix, it has a
complete set of orthonormal eigenvectors and their associated or-
dered real nonnegative eigenvalues identiied as the frequencies of
the graph. The Laplacian is diagonalized by the Fourier basis U⊺:
L = UΛU⊺ where Λ is the diagonal matrix whose diagonal ele-
ments are the corresponding eigenvalues, i.e., Λii = λi . The graph
Fourier transform of a signal x ∈ Rn is deined as x̂ = U⊺ x ∈ Rn

and its inverse as x = U x̂[17, 18]. To enable the formulation of
fundamental operations such as iltering in the vertex domain, the
convolution operator on graph is deined in the Fourier domain
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Figure 1: ICNet structure

such that f1 ∗ f2 = U [(U⊺ f1) ⊙ (U
⊺ f2)], where ⊙ is the element-

wise product, and f1/f2 are two signals deined on vertex domain.
It follows that a vertex signal f2 = x is iltered by spectral signal

f̂1 = U⊺ f1 = g as:

g ∗x = U [g(Λ) ⊙ (U⊺ f2)] = Ug(Λ)U⊺ x .

Note that a real symmetric matrix L can be decomposed as L =
UΛU−1 = UΛU⊺ since U−1 = U⊺ . D. K. Hammond et al. and Def-
ferrard et al.[4, 6] apply polynomial approximation on the spectral
ilter g so that:

g ∗x = Ug(Λ)U⊺ x

≈U
∑

k

θkTk (Λ̃)U
⊺ x (Λ̃ =

2

λmax
Λ− IN)

=

∑

k

θkTk (L̃)x (UΛk U⊺
= (UΛU⊺)k )

(2)

According to the analysis above, graph Laplacian matrix is re-
placed with adjacency matrix. To it whole-graph level regression
task, the proposed method designs two aggregation neural net-
works. Formally, it is denoted as:

Y = g ∗x

=GCN (W,x)Θf eatΘдate

≈WxΘGCNΘf eatΘдate (simpliication & approximation)

(3)

However, the running time tends to grow at an exponential rate
as the number of encrypted gates increases. Therefore, the model
is modiied as:

Y = eWxΘGCNΘf eatΘдate (4)

As shown in Fig. 1, the model conducts one or two graph convo-
lutional operation(GCN) to fuse information from graph structure
and gate attributes in the spectral domain. Then two sets of neural
networks are performed for the feature and gate aggregation. Last
few layers are fully connected to predict the runtime.

3.3 Algorithm description

The Algorithm 1 irst prepare graph adjacency as circuit connection
representation(line 2). To it machine learning schema, the whole
dataset is split into training and testing dataset. Each dataset is
then split into small batch size to improve learning eiciency(line
3-4). ICNet training is an iterative process which updates the model
until the residues are small enough or converged(line 6-13). First,

Algorithm 2: ICNet

Input: a integrated circuit graph G = {V, E}, gate attribute
set: x j (i), i ∈ 1, 2, ..., |V| for each encryption instance
D j , the real runtime Yj for instance D j

Output: a neural network function with parameters ΘGCN ,
Θf eat and Θдate

1 // data preparing

2 calculateW which is the adjacency matrix of G

3 split encryption instances D into training set Dtrain and
testing set Dtest

4 split both Dtrain and testing set Dtest into batch set dtrain
and testing set dtest

5 // update ICNet

6 θ = {ΘGCN ,Θf eat ,Θдate }

7 initialize θ with Gaussian or uniform distribution.

8 repeat

9 randomly select one dtrain = xd1,xd2, ...

10 calculate runtime eWdtrainΘGCNΘf eatΘдate ▷ Eq. 4

11 calculate residues δ = Y − eWdtrainΘGCNΘf eatΘдate

12 compute derivatives to update parameters: θ ← θ + β∇θδ ,
where β is learning rate

13 until δ convergence;

the model parameters are initialized by Gaussian or uniform dis-
tribution. In each iteration, a batch of the training set is selected
randomly. By equation 4, the model computes the predicted run-
time(line 10) and then calculates the residues between real runtime
and prediction(line 11). Following normal deep learning schema,
the model update parameters by the derivatives regarding the pa-
rameters themselves with learning rate(line 12).

4 EVALUATION

This section elaborates evaluation of the proposed method ICNet
with competitive baselines including: Graph deep learning methods:

• GCN[8]

• ChebNet[4]

The input of these models above is exactly same as our model. We
also compare against several stat of art regression models1:

• Linear Regression(LR)
• LASSO

1https://scikit-learn.org/stable/modules/linear_model.html
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• Epsilon-Support Vector Regression(SVR). Two kernels were
applied: polynomial(P) and RBF(R).
• Ridge Regression(RR)
• Elastic Net(EN)
• Orthogonal Matching Pursuit(OMP)
• SGD Regression
• Least Angle Regression(LARS)
• Theil-Sen Estimators(Theil)

These regression models does not model graph using Laplacian
or adjacency matrix, since they can only accept feature vector.
Therefore, the input are encoded as mean or sum on concatenation
of Laplacian or adjacency matrix and gate attributes.

4.1 Data processing

The datasets are obtained by running SAT algorithm [20, 21] on
real-world ISCA-85 benchmark: First, we take a circuit and select a
random gate and replace it with LUT of ixed size (LUT size 4 in
current work). To deobfuscate, we implement SAT attack algorithm
[20, 21] with the obfuscated circuit netlist as input. We monitor the
time that sat takes to decode the key, which is the deobfuscation
time. The proposed model is evaluated on two datasets:

• Dataset 1: the total number of the encryption location ranges
from 1 to 350, this is for testing if the model is sensitive to
the number of encrypted quantity of gates.
• Dataset 2: the total number of the encryption location ranges
from 1 to 3, this is for testing if the model can handle very
small value.

The circuit in the experiments is the same, and the total gate num-
ber of the circuit is 1529. For graph deep learning methods, graph
is represented using Laplacian matrix or adjacency matrix, while
for general regression baselines, the graph Laplacian or adjacency
matrix is summed or averaged across gates. Though the evalua-
tions shown here are mere proof-of-concept of how powerful the
proposed GCN based deobfuscation runtime prediction is, it can
be applied to a SAT-hardening solution utilizing any replacement
policy, LUT size and other SAT parameters, by retraining GCN.

4.2 Experiment coniguration

The features of gate used in experiments include

• gate mask: if the gate is encrypted, the value is set to 1,
otherwise 0.
• gate type: the gate type include {AND, NOR, NOT, NAND,
OR, XOR}, they are encoded using one-hot coding, such as
[1,0,0,0,0,0,] for AND and [0,1,0,0,0,0,] for NOR gate.

For graph deep learning model(ChebNet and ICNet), the graph
structure is represented using graph Laplacian matrix or adjacency
matrix. These model employ ADAM [9] optimizer and will stop
learning when the learning loss is converged. The implementation
of our model will be available online. All the baselines and the
proposed model are tested on two diferent feature set, since gate
type is useful or not is unknown.

• Location: Only the gate mask is included.
• All features: Besides gate mask, gate type is also included.

For node aggregation, we apply sum andmean since they are the
popular. Deep learning model can have another node aggregation
method, i.e., learning by a neural network automatically. Therefore,

in the results,ChebNet−NN and ICNet−NN denote the automatic
version. It is expected that deep neural network can learn a the
optimal aggregation which is not worse than our assumption, i.e.,
sum or mean.

Location All feat

Method Sum Mean Sum Mean

SVR RBF 1.6791 0.6784 1.6675 0.6739

SVR Poly 0.1913 2.1890 0.1696 2.2091

SGD 2.1450e+25 2.1823 1.0430e+26 2.2072

LR 0.2839 0.2284 0.2449 0.2253

RR 0.2309 2.1508 0.2058 2.1738

LASSO 0.9213 2.1843 1.0127 2.2083

EN 0.5763 2.1843 0.6409 2.2083

OMP 1.8182 1.9192 1.8651 2.0337

LARS 1.9968 2.1277 2.0434 2.1833

Theil 0.2948 0.2238 0.2385 0.2277

ChebNet 0.1484 8.8370e+33 0.1761 0.1760

ChebNet-NN 0.17858 3.8549e+27

GCN 0.3364 0.4149 0.2496 0.3290

GCN-NN 0.1811 0.1606

ICNet 0.1534 0.1256 0.2390 0.1902

ICNet-NN 0.0843 0.1367

Table 1: Regression Performance (Mean Square Error) on

Dataset 1

Location All feat

Method Sum Mean Sum Mean

SVR RBF 0.0051 0.0048 0.0050 0.0051

SVR Poly 0.0048 0.0048 0.0048 0.0051

SGD 7.6301e+25 0.0045 2.0675e+26 0.0049

LR 6.9063ee+23 4.6521e+20 7.2916e+25 5.8600e+23

RR 0.0070 0.0045 0.0065 0.0049

LASSO 0.0047 0.0045 0.0046 0.0049

EN 0.0047 0.0045 0.0046 0.0049

OMP 0.0047 0.0045 0.0045 0.0049

PAR 0.0054 0.1918 0.0051 0.3143

LARS 0.0047 0.0045 0.0046 0.0049

Theil N/A N/A N/A N/A

ChebNet 0.0047 0.0045 4.3570e+28 0.0048

ChebNet-NN 0.0043 0.0047

GCN 0.0061 0.0046 0.0048 0.0050

GCN-NN 0.0050 0.1606

ICNet 0.0049 0.0047 0.0040 0.0043

ICNet-NN 0.0051 0.0048

Table 2: Regression Performance (Mean Square Error) on

Dataset 2

4.3 Regression Results

In the dataset 1 experiment(Table 1, all methods achieved accept-
able mean square error except SGD (sum) which did not learn a
reasonable model to predict the runtime, since the value is very
large (at e+25/+26 scale). Most regression methods are sensitive to
the aggregation method. For example, only using location feature,
MSE of RR is 0.2319 when using sum, but it got 2.1508 when using
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mean function. Sensitive models include SVR, LASSO, and EN. The
best of the regression baselines is LR and Theil, which achieved
around MSE of 0.22. On the other hand, graph deep learning model
ChebNet is slightly better than the best regression model. However,
ChebNet is not stable and sensitive to the aggregation method and
feature set, since it may yield a very large error. Our model, ICNet,
is stable to the feature and aggregation setting and outperformed all
the other methods, i,e, 0.11001 of MSE. Note that ICNet-NN is better
than ICNet with the sum or mean, which demonstrates that there
exists a better aggregation method, and deep neural network can
learn this function automatically. Note that ICNet is always better
than GCN under any settings, which shows that our improvement
works on circuit senario.

While in the dataset 2, it is more challenging, since all the runtime
is small and the model has to be very precise to achieve low MSE.
All methods at almost the same level of MSE. Once again, some of
the regression models are not stable such as SGD and LR. Graph
deep learning method includes ChebNet and ICNet still at the best
error level. ChebNet can achieve the best level but sensitive to the
settings, while ICNet is insensitive to all coniguration. ICNet-NN is
still the best method, and it outperformed its mean and sum version.
Moreover, ICNet is more stable than GCN and ChebNet.

4.4 Prediction behavior analysis

In the section, we show several predicted value along with real
value to analyze the prediction characterization.

Since there is little diference in dataset 2, we choose several
competitive baselines in dataset 1 experiments. Several baselines
performed very badly such as OMP and SGD which only output
values around a constant level. SVR(RBF) is also bad and yield
constant value when the real runtime is larger than a threshold.
The results of EN and LASSO is positively related to the real values,
but the correlation parameters are signiicantly diferent from the
truth. Linear, RR, SVR(POLY) and Theil predicted the values that
are relatively closer than that of the other baselines, but with high
variance. The proposed method, ICNet, not only predicted the value
very precisely but also with small variance.

5 CONCLUSION

In this work, we have introduced a neural network model for re-
covering SAT runtime on ICs. To properly fuse graph structure
and gate attributes, an enhanced graph convolutional operator is
introduced. The proposed method can avoid attribute propagation
which is in the original GCN but not suitable for ICs. Experiments
on real-world datasets suggest that the proposed model is capable
of modelling the runtime regarding the circuit graph accurately.
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Figure 2: Comparison between predictions and real values: Pink dot are real values, blue lines are the predictions. x-axis is

data index in testing data while y-axis is runtime value
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