
2015 IEEE International Conference on Big Data (Big Data)

978-1-4799-9926-2/15/$31.00 ©2015 IEEE 85

System and Architecture Level Characterization of Big Data
Applications on Big and Little Core Server Architectures

Maria Malik1, Setareh Rafatirah2, Avesta Sasan1, Houman Homayoun1
1Department of Electrical and Computer Engineering, 2Department of Information Sciences and Technology

George Mason University, Fairfax, VA, USA
{mmalik9, srafatir, hhomayou}@gmu.edu

Abstract— Emerging Big Data applications require a significant
amount of server computational power. Big data analytics
applications rely heavily on specific deep machine learning and
data mining algorithms, and exhibit high computational intensity,
memory intensity, I/O intensity and control intensity. Big data
applications require computing resources that can efficiently scale
to manage massive amounts of diverse data. However, the rapid
growth in the data yields challenges to process data efficiently
using current server architectures such as big Xeon cores.
Furthermore, physical design constraints, such as power and
density, have become the dominant limiting factor for scaling out
servers. Therefore recent work advocates the use of low-power
embedded cores in servers such as little Atom to address these
challenges. In this work, through methodical investigation of power
and performance measurements, and comprehensive system level
and micro-architectural analysis, we characterize emerging big
data applications on big Xeon and little Atom-based server
architecture. The characterization results across a wide range of
real-world big data applications and various software stacks
demonstrate how the choice of big vs little core-based server for
energy-efficiency is significantly influenced by the size of data,
performance constraints, and presence of accelerator.
Furthermore, the microarchitecture-level analysis highlights where
improvement is needed in big and little cores microarchitecture.

Index Terms—Performance, Power, Characterization, Big Data, High-
Performance server, Low-Power server, Accelerator

1. INTRODUCTION
 Advances in various branches of technology – data sensing,
data communication, data computation, and data storage – are
driving an era of unprecedented innovation for information
retrieval. The world of Big Data is constantly changing and
producing huge amounts of data that creates challenges to
process the applications using existing solutions. Big data
applications require computing resources and storage
subsystems that can scale to manage massive amounts of
diverse data. Individuals, businesses, governments, and society
as a whole now have access to enormous collections of big
data, empowering them to build their own analytics.
Datacenters are therefore required to introduce more nodes to
their infrastructure or replace their existing hardware with more
powerful systems to respond to this growing demand. This
trend increases the infrastructure cost and power consumption.
We believe this is the right time to identify the right computing
platform for Big Data analytics processing that can provide a
balance between processing capacity and power efficiency.

Emerging data applications, in particular from web
service domain, share many inherent characteristics that are
fundamentally different from traditional desktop, parallel, and
scale-out applications [2]. Big data analytics applications in
these domains heavily rely on big-data-specific deep machine

learning and data mining algorithms, and are running complex
database software stack with significant interaction with I/O
and OS, and exhibit high computational intensity, memory
intensity, I/O intensity and control intensity. In addition,
unlike conventional CPU applications, big data applications
combine a high data rate requirement with high computational
power requirement, in particular for real-time and near-time
performance constraints.

This new set of characteristics is necessitating a change in
the direction of server-class microarchitecture to improve their
computational efficiency. However, while demand for data
center computational resources continues to grow as the size
of data grows, the semiconductor industry has reached its
physical scaling limits and is no longer able to reduce power
consumption in new chips. Physical design constraints, such
as power and density, have therefore become the dominant
limiting factor for scaling out data centers [3, 4, 5, 6]. Current
server designs, based on commodity homogeneous processors,
will therefore not be the most efficient in terms of
performance/watt to process big data applications [6, 7]. In
this work we show that while high performance big cores are
optimized for traditional CPU applications, for big data they
are very inefficient and are not satisfying their computational-
efficiency requirements.

In exploring the choice of server architecture for big data,
in this paper, we present a comprehensive analysis of the
measurement of power and performance of big data
applications on two very distinct microarchitectures; a high
performance big Xeon core and another a low power
embedded-like little Atom core. These two types of servers
represent two schools of thought on server architecture design:
using big core like Xeon, which is a conventional approach to
designing a high-performance server, and the Atom, which is
a new trajectory in server design that advocates the use of a
low-power core to address the dark silicon challenge facing
servers [7, 8, 9, 10, 11]. In addition to power and performance
study, we have also performed the Energy-DelayX Product
(EDXP) analysis to evaluate the trade-off between power and
performance to understand how near real-time performance
constraints for big data analytics affects the choice of big vs.
little core server as a more efficient architecture. As for big
data applications, achieving a higher processing rate of large
amount of data is a prime target, so we have evaluated the
processing capability under different data size (per node) by
using two metrics – Data Processed Per Second (DPS) and
Data Processed Per Joule (DPJ). The analysis helps us
understand how the choice of big vs. little cores introduces
significant tradeoff in performance, power, energy-delay, and

86

processing capacity for efficient and near-time processing of
big data applications. The results demonstrate that while in
most applications, server with little cores is more efficient in
terms of EDP and DPJ, with constraints for near real-time
performance the most efficient server architecture depends on
the data size and the type of application.

As chips are hitting power limits, computing systems are
moving away from general-purpose designs and toward
greater specialization. Hardware acceleration through
specialization has received renewed interest in recent years,
mainly due to the dark silicon challenge. To find out the right
architecture for big data processing, it is important to
understand how deploying an accelerator, such as FPGA,
would necessitate adapting the choice of big vs. little cores.
The post acceleration code characteristics are important to find
the right architecture for efficient processing of big data
applications. For this purpose, we analyze the choice of big vs.
little core-based servers for the code that remains for the CPU
after assuming the hotspots are offloaded to an accelerator,
compared with the choice of big vs. little before acceleration.

Overall, our characterization results across a wide range
of real-world big data applications and various software stacks
demonstrate how the choice of big vs little core-based servers
for energy-efficiency is significantly influenced by the size of
data, performance constraints, and presence of accelerator.

To provide insight into whether current design of big and
little core requires improvement in the microarchitecture
parameters for efficient big data processing we further perform
a comprehensive microarchitecture characterization. This study
assists in determining whether big data workloads require
innovation in microprocessor microarchitecture design.
Contributions: This paper makes the following key
contributions:

• We analyze the measurements of performance and power of
Big Data applications on two state-of-the-art server
platforms, one with IntelTM Xeon; Big cores and the other
with IntelTM Atom; Little cores. We compare the results with
traditional CPU, parallel and scaleout applications.

• We analyze the performance of hotspot tasks involve in an
end-to-end big data analytics running various software
stacks including Hadoop MapReduce and Apache Mahout.
This includes read and write to HDFS, sorting, compression
and decompression, mapping and reduction and calling

several standard libraries.
• We demonstrate how the size of data, type of application

(e.g. I/O intensive and compute Intensive), and performance
constraints affect the choice of big vs little core-based
servers for efficient big data processing.

• We show how offloading map and reduce tasks to an
accelerator such as FPGA affects the choice of big vs. little
core-based servers for the remaining code on the CPU.

• We perform a comprehensive microarchitecture analysis to
find the performance bottlenecks in both big and little cores
when running big data applications.

 The rest of the paper is organized as follows. Section 2
provides background for big data. Section 3 describes the
studied big data, scale-out and Traditional serial and parallel
CPU benchmarks. Our methodology and experimental setup
details are presented in section 4. Section 5 presents the
experimental results and provides system level analysis along
the micro-architectural characterization of big data
applications. Section 6 provides the related work. Lastly,
section 7 concludes the paper.

2. BACKGROUND ON BIG DATA APPLICATIONS
 The “cloud” is a new platform that has been used to cost
effectively deploy an increasingly wide variety of applications.
Vast amount of data is now stored in a few places rather than
distributed across a billion isolated computers, therefore creates
opportunities to learn from the aggregated data. The rise of
cloud computing and cloud data storage, therefore, has
facilitated the emergence of big data applications. Big data
applications are characterized by four critical features, referred

Figure 1: Illustration of Four “Vs” of Big Data

Big Data

Multimedia

Unstructured

Semistructured

Structured

Variety

Velocity

Veracity

Volume

Noise

Uncertainty

Incompleteness

Inconsistent

M
B GB TB PB EB

St
re

am

Re
al

 T
im

e

Ne
ar

 T
im

e

Ba
tc

h

Table 1: Studied Big Data Applications

87

as the four “Vs”, shown in Figure 1 [38]: volume, velocity,
variety, and veracity. Big data is inherently large in volume.
Velocity refers to how fast the data is coming in and to how
fast it needs to be analyzed. In other words, velocity addresses
the challenges related to processing data in real-time. Variety
refers to the number and diversity of sources of data and
databases, such as sensor data, social media, multimedia, text,
and much more. Veracity refers to the level of trust,
consistency, and completeness of data. Traditionally, cloud
servers mainly use high performance CPU cores such as Xeon.
However, low-power embedded cores such as Atom are
gradually entering the server market. Therefore, it is important
to characterize emerging big data applications on these two
different platforms to understand their computational need and
architectural bottlenecks.

3. DOMINANT BIG DATA WORKLOADS
 The studied big data workloads in this paper are
representative programs from 15 different domains such as
graph mining, data mining, data analysis platform and pattern
searching applications, which are frequently used in the real
world. We provide these selected applications, along with their
particular domain and data type in Table 1.

3.1 Big data Workload
3.1.1 Hadoop Microbenchmark. Apache Hadoop is an open-
source Java-based framework of MapReduce implementation.
It assists the processing of large datasets in a distributed
computing environment and stores data in highly fault-tolerant
distributed file system, HDFS. Hadoop has numerous micro-
benchmarks from which we have included a combination of
I/O intensive and CPU intensive applications as follows:
• WordCount reads text files and determines how often the

words appear in a set of files. Wordcount is a CPU
intensive application [30].

• Sort uses the map/reduce framework to sort the input
directory in the output directory. The actual sorting occurs
in the internal shuffle and sort phase of MapReduce. The
data is transferred to reducer that is an identity function.
Sort is an I/O intensive application [30].

• Grep extracts matching strings provided by user from text
files and sorts matching strings by their frequency. Grep is
a CPU intensive application.

• TeraSort performs a scalable MapReduce-based sort of
input data. It first samples the input and computes the
input distribution by calculating the quantiles equal to the
number of reduces that uses a sorted list of N-1 sampled
keys to define the key range for each reduce. TeraGen
command generates the large random data for TeraSort.
[30].

• TestDFSIO-write/read is a storage throughput test that is
divided into two parts, TestDFSIO-Write and TestDFSIO-
Read to write and read data to/from HDFS, respectively.

3.1.2 GraphMining. Graph construction can be very
challenging because of complex iterative and data-dependent
nature of the graph. Hadoop is well suited for this task, but
requires expertise to handle graph complexities. GraphBuilder
addresses this challenge by providing a scalable graph
construction software library for Hadoop. GraphBuilder

constructs graphs for PageRank and LDA algorithms
implemented on PowerGraph [12].
3.1.3 Collaborative Filtering (CF) Recommendation is a
technique used by many recommender systems to predict the
preference of users based on their previous rating history [13].
3.1.4 Clustering is one of the fundamental tasks in Data
Mining. Clustering assembles data items into groups based on
their similar features. We have analyzed meanshift clustering
as it is a non-parametric clustering technique that does not
require prior knowledge of the number of clusters [13].
3.1.5 Association Rule Mining is a well-known approach for
exploring association between various parameters in large
databases. We have analyzed FP (Frequent Pattern)-Growth; a
resource intensive program that aims to determine item sets in
a group and identifies which items typically appear together
[13,14].
3.1.6 Sequential Pattern Mining Framework (SPMF) is an
open-source data mining library written in Java. It offers
numerous data mining algorithms for sequential pattern, rule
mining and frequent item mining [15] for which we have
selected Equivalence Class Transformation (Eclat),
RuleGrowth, Generalized Sequential Pattern (GSP) and
Sequential Pattern Discovery using Equivalence classes
(SPADE).

3.2 Scale-Out Workloads
3.2.1 Classification technique learns from the existing
categorizations and groups the unclassified items to the best
corresponding category [3].
3.2.2 Graph-analysis is performed by implementing the
TrunkRank on GraphLab [3]. This application studies the
impact of a Twitter user for graph analysis.
3.2.3 DataCaching. Memcached is a high-performance,
general-purpose distributed memory caching system. It uses in-
memory key-value storage mechanism for small chunks of
arbitrary data API calls [3].

3.3 Traditional CPU Benchmarks
3.3.1 SPEC CPU2006 workloads are industry standard real-
life applications designed to stress the CPU, memory
subsystem and compiler.
3.3.2 PARSEC 2.1 is an open-source parallel benchmark suite
for evaluating multi-core and multiprocessor systems.

4. MEASUREMENT TOOLS AND METHODOLOGY
Figure 2 presents a methodology of our approach. We

conduct our study on two state-of-the-art servers, Intel Xeon
and Intel Atom. Intel Xeon E5 enclosed with two Intel E5-2420
processors that includes six aggressive processor cores per
node with three-level of the cache hierarchy. Intel Atom C2758
has 8 processor cores per node and a two-level cache hierarchy.
Table 2 summarizes the key architectural parameters of these
two servers. The operating system used is Ubuntu 13.10 with
Linux kernel 3.11.

We analyze the architectural behavior using Intel VTune
[16], a performance-profiling tool that provides an interface to
the processor performance counters. We have used Watts up
PRO power meter to measure the power consumption of the
servers [17]. Wattsup power meter produces the power
consumption profile every one second of an application under

88

test. The power reading is for the entire system, including core,
cache, main memory, hard disks and on-chip communication
buses. We have collected the average power consumption of
the studied applications and subtracted the system idle power
to calculate the dynamic power dissipation of the entire energy
analysis. The same methodology is used in [1] as well.

We discuss the system-level - performance, power, EDP-
and microarchitecture-level analysis - cache misses, branch
misprediction and TLB misses- for big data applications and
Hadoop micro-benchmarks. In addition, Table 1 shows the
datasets used to drive the studies applications.

5. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we discuss the system-level and micro-

architecture-level analysis of little and big cores, when running
traditional CPU benchmarks, parallel benchmarks, scale-out,
and big data applications. Due to space constraints, we are only
reporting the average results for SPEC, PARSEC and Scale-
Out applications. Moreover, we have conducted the data size
sensitivity analysis of Hadoop micro-benchmarks with the
dataset of 10MB, 100MB, 1GB and 10GB per node to
understand the impact of the size of data per processing node
on system-level as well as microarchitecture-level parameters.
5.1 Performance Analysis
 In this section, we analyze the performance measurements
of big data applications in term of IPC and compare it with the
traditional benchmarks. Figure 3.1 presents that the average
IPC of big data is 1.65 times lower than the traditional CPU
benchmarks on big core and 1.21 times on little core.
Therefore, noticeably more performance drop (37%, on
average) is observed for big data applications compared to
traditional CPU applications when running on big core server
compared to little core server. In general, we observe lower
IPC in big data applications compared with the traditional
benchmarks. Furthermore, little core-based server is
experiencing 1.43 times lower IPC in comparison to big core
server as Xeon can process up to 4 instructions simultaneously
while Atom is limited to 2 instructions per cycle. Figure 3.2
shows the IPC of Hadoop micro-benchmarks for different data
sizes. The results are consistent with the results in Figure 3.1
showing lower IPC on little core compared to big core across
all data sizes. We also observe that on little core, increasing the
data size reduces the IPC since the cache misses increases
(mainly Icache miss as will be described in section 5.5.1).

Little core, due to its low processing capacity (issue width of
2), cannot hide cache miss penalty as effective as big core.
However, on big core while for most cases, increase in data
size per node reduces the IPC, there are few exceptions where
increasing the data size from 100MB to 1000MB per node
increases the IPC. This is mainly due to higher cache locality
as a result of larger and more complex cache subsystem in big
core, which results in reduction in cache miss rates (more on
this in section 5.5.1).
5.2 Power Consumption and Energy-Efficiency Analysis
 In this section, we report the power consumption of big
data applications and discuss the energy-efficiency analysis to
evaluate the trade-off between power and performance.
5.2.1 Power Characterization

Figure 4.1 shows the average dynamic power consumption
of the studied applications on big and little core servers. The
idle power of the servers is subtracted from the measured (run-
time) power. Note that the power results reported are for the
entire system, including core, cache, DRAM and on-chip
communication buses. Big core consumes on average 35
Watts of dynamic power with the peak of 44 Watts in cluster
application. Little core consumes much lower dynamic power
as expected, ranging from 0.9 to 6 Watts with an average of
4.8 Watts. Figure 4.2 shows that the power consumption
increases as the size of data per node increases in most cases
across both big and little architectures. This is more noticeable
in little core. While increasing in data size in little core
reduces the IPC and therefore core power, it increases cache
and off-chip traffic in DRAM and bus subsystem (see LLC
MPKI reported in Figure 10). Therefore, for low-end little
core where cache, DRAM and off-chip components are
dominant power consumer (unlike high performance Xeon
core), a clear rise in power consumption is observed as the
size of data increases.
5.2.2 Energy-Efficiency Analysis with near Real–Time

Processing Constraints
 Based on the results of power consumption for both
platforms, we have evaluated the trade-off between power and
performance by investigating the EDP metric. Furthermore, we
have explored the ED2P and ED3P to understand the impact of
near real-time performance constraints on big data applications
and how more constraints on performance affects the choice of
most efficient server architecture. Figure 5.1 illustrates EDP,
ED2P and ED3P ratio for big vs little cores. The EDXP

Figure 2: Methodology

Benchmarks Platform

Performance Power

System Analysis Microarchitectural Analysis

Hadoop
MicroBenchmarks

Hardware

Operating
system

Intel VTune Watts Up?
Power
meter

Ha
rd

w
ar

e/
So

ftw
ar

e
In

fr
as

tr
uc

tu
re

M
ea

su
re

m
en

t
An

al
ys

is

Big Data

Performance Power EDP
Cache

Missess
TLB

Misses
Branch

Misprediction

Table 2: Architectural Parameters
Processor Intel Atom C2758 Intel Xeon E5-2420

Operating Frequency 2.40GHz 1.9GHz

Micro-architecture Silvermont Sandy Bridge

L1i Cache 32 KB 32 KB

L1d Cache 24 KB 32 KB

L2 Cache 4*1024 KB 256KB

L3 Cache - 15MB

PageTable 16972 KB 4260 KB

System Memory 8GB 32GB

TDP 20W 95W

89

(X=1,2,3) results show that big core-based server is noticeably
more efficient for traditional CPU applications compared with
big data. Also, interestingly for scale out benchmarks, little
core is always more efficient than big core for EDP, ED2P and
ED3P metrics. For real-world big data applications EDP results
show that the little core-based server is almost always a more
efficient platform for CPU intensive applications. However, for
heavy I/O intensive applications such as sort and terasort, for
large data sizes (10000MB), the big core becomes more
efficient than the little core in terms of EDP. Complex memory
subsystem in big core along with higher processing capacity
(2X more than little core) allows big core to be more effective
in hiding the cost of high I/O communication in these
applications and can explain why big core-based server is more
efficient. However, with more near real-time performance
constraints, i.e. for ED2P and ED3P metrics, big core becomes
more efficient compared to little cores across most
applications. Figure 5.2 presents the data sensitivity analysis of
Hadoop micro-benchmarks. The increase in the data size,
progressively makes the big core more efficient compared with
little core, however the point where big core becomes more
efficient than little core varies across applications and depends
on the data size and the performance constraint.
Observation. The results illustrate that little core server is
more efficient in terms of EDP for big data applications with
the smaller data sizes. However, as the size of data increases
and with more performance constraints big core server
becomes more efficient.
5.3 DPS-DPJ Analysis

In this section, we evaluate the data processing capability
of big and little core-based server for various data sizes in

Hadoop micro-benchmarks. We report the data processed per
second (DPS) and the data processed per joule (DPJ) metrics
to compare the data processing capability and efficiency of the
two server architectures.

The results are reported in Figure 6.1 and Figure 6.2. For
most applications, on both big and little platforms with an
increase in the data size the DPS first rises rapidly to a peak
and then declines slightly. The data size at which the peak
DPS occurs varies across applications and architectures. The
two metrics, DPS and DPJ, also help to guide MapReduce
scheduling decision. The peak DPS occurs in terasort and sort
at only 1000MB of size, while in other applications occurs in
at least an order of magnitude larger data size. The reason is
that sort and terasort are I/O intensive applications and the rise
in data size exacerbates the I/O cost to an extent that it
diminishes the benefit of high processing capacity. The DPS
difference between big and little cores-based server is
becoming larger for CPU intensive applications such as grep
and wordcount as the size of data increases. However, this is
not the case for I/O intensive applications such as sort and
DFSIO-read as the I/O cost becomes the dominant
performance bottleneck and the processing capacity of the
processor; i.e. big vs. little become a less important factor.
Overall, for small data size, below 1000MB per node, the two
architectures, big and little, have almost similar processing
capacity in terms of DPS, and it is only for large data sizes
that the DPS gap between the two becomes clear.

Similar to DPS, for DPJ, in all applications we observe a
rise in data processing efficiency on big core as the size of
data increases. However, in I/O intensive applications such as
terasort, DFSIO-read and write, the rise in DPJ on Xeon is

Figure 3: IPC (3.1) Big Data workloads (3.2) Different configurations of Hadoop micro-benchmarks

Figure 4: Power Reading (4.1) Big Data workloads (4.2) Different configurations of Hadoop micro-benchmarks

Figure 5: EDP, ED2P and ED3P Analysis (5.1) Big Data Workloads (5.2) Different configurations of Hadoop micro-benchmarks

0

0.5

1

1.5

2

2.5

Ec
lat

Ru
leG

ro
wt

h
GS

P
SP

AD
E

Pa
ge

Ra
nk LD
A

FP
 G

ro
wt

h CF
Clu

ste
rin

g
W

or
dC

ou
nt

10
GB

So
rt1

0G
B

Gr
ep

10
GB

Te
ra

So
rt1

0G
B

DF
SIO

-w
rit

e1
0G

B
DF

SIO
-re

ad
10

GB
Av

g_
Sp

ec
Av

g_
Pa

rse
c

Av
g_

Sc
ale

ou
t

Av
g_

Big
Da

ta

IPC

Atom Xeon

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

IP
C

Atom Xeon

0
5

10
15
20
25
30
35
40
45
50

Ec
la

t
Ru

le
Gr

ow
th

GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
 G

ro
w

th CF
Cl

us
te

rin
g

W
or

dC
ou

nt
10

GB
So

rt
10

GB
Gr

ep
10

GB
Te

ra
So

rt
10

GB
DF

SI
O-

w
rit

e1
0G

B
DF

SI
O-

re
ad

10
GB

Av
g_

Sp
ec

Av
g_

Pa
rs

ec
Av

g_
Sc

al
eo

ut
Av

g_
Bi

gD
at

a

Po
w

er
 (W

)

Atom Xeon

0
5

10
15
20
25
30
35

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

Po
w

er
 (W

)

Atom Xeon

0
0.5

1
1.5

2
2.5

3
3.5

Ec
la

t
Ru

le
Gr

ow
th

GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
Gr

ow
th CF

Cl
us

te
r

W
or

dC
ou

nt
10

GB
So

rt1
0G

B
Gr

ep
10

GB
Te

ra
So

rt1
0G

B
DF

SI
O-

w
rit

e1
0G

B
DF

SI
O-

re
ad

10
GB

Av
g_

Sp
ec

Av
g_

Pa
rs

ec
Av

g_
Sc

al
eo

ut
Av

g_
Bi

gD
at

a

En
er

gy
 D

el
ay

 P
ro

du
ct

 A
to

m
 vs

 X
eo

n

EDP ED2P ED3P

2.
47

7.
13

3.
33

0

0.5

1

1.5

2

2.5

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

En
er

gy
 D

el
ay

 Pr
od

uc
t A

to
m

 vs
 X

eo
n

EDP ED2P ED3P

2.
77

89
.2
1

15
.7
3

4.
98

17
.0
9

90

insignificant. For CPU intensive applications including
wordcount and grep there is a significant rise in DPJ on Xeon
as the size of data increases.

Overall, for I/O intensive applications such as sort,
terasort, DFSIO-write and DFSIO-read, Atom-based server is
noticeably more efficient than big Xeon. However, in CPU
intensive micro-benchmarks, WordCount and Grep, the DPJ
gap between big and little core-based server reduces with the
increase in data size. It is also interesting to observe that the
DPJ of Xeon can exceed Atom in a number of applications
and across a number of different data sizes.
Observation-The results illustrate that the choice of big vs
little core-based servers in terms of DPS and DPJ analysis are
closely decided by the application type and the size of data.
5.4 Performance Hotspot and Post-Acceleration CPU code

Characterization
As chips are hitting power limits, computing systems are

moving away from general-purpose designs and toward
greater specialization. Hardware acceleration through
specialization has received renewed interest in recent years,
mainly due to the dark silicon challenge. In addition to big,
medium, and small cores, the integration of domain-specific
accelerators, such as GPUs and FPGAs has become extensive.

To find out the right server architecture for big data
processing, it is important to understand how deploying an
accelerator, such as FPGA, would necessitate adapting the
choice of CPU. The post acceleration code characteristics are
important to find the right architecture for efficient processing
of big data applications. In this section, we analyze the choice
of big vs. little core-based server for the code that remains for
the CPU after acceleration, compared with the choice of big
vs. little before acceleration.

A key research challenge for heterogeneous architecture
that integrates CPU and accelerator such as FPGA is workload
partitioning and mapping of a given application (which is
alternatively referred to as scheduling) to CPU and FPGA for
power, performance, and QoS. This is commonly referred as
hardware and software partitioning. A common method for
HW/SW partitioning is to profile the application to find the
performance hotspot region. These regions are candidates for
FPGA acceleration, as long as the overhead of communication
with CPU is not significant [18].

To perform hotspot analysis on big data applications, we
use Intel Vtune to select the common hotspot modules of the
applications running on big and little cores. First, we identify

and analyze hotspot modules based on their execution time.
Figure 7.1 shows the common hotspot modules of big data
applications and Figure 7.2 presents Hadoop micro-benchmark
hotspots with a data size of 1GB on Big and Little cores,
respectively. Map and Reduce tasks represent the computation
part to perform the task, such as grep, sort and etc. Libz is
performing the compression and decompression task (library)
for the Hadoop workload. Module dynamic contains hotspot
functions such as java-finalize to perform the completion tasks
of an object. Compiled java code includes the java.lang.string
class to represent character strings along with the
system.array, copy, math, abstractSringBuilder and object
classes. Libpthread contained functions like mutex
lock/unlock for the thread creation and protection and
cond_wait functions to block on a condition variable.

We have also collected the IPC for each of these hotspot
functions. Due to space limitation, we do not show the details
of the IPC results. The results show that the performance gap
between big and little cores for Map and Reduce task is 2X.
This large gap shows that big core has a clear advantage over
little core to run these hotspot functions. Since the hotspot
functions and their corresponding libraries are taking up most
of execution time, they are candidate for acceleration, for
instance with offloading mapper and reducer tasks to FPGAs
[19, 20, 21, 25, 28]. Several recent works have demonstrated
the potential of offloading map and reduce tasks to FPGA
platforms [22, 23, 24, 41].

To analyze post-accelerated code and the choice of server
architecture, we assume map and reduce tasks are offloaded to
an accelerator [22, 23, 24]. We do not make any assumption
about the speedup gain on accelerator nor the cost of
offloading to the accelerator. By taking out the time it takes to
run hotspot function, we can study the remaining modules that
are left for the big or little core-based server to run.

Figure 8 shows the impact of post-accelerated code by
investigating the speed up - migrating from Atom to Xeon
before and after acceleration. We report the little vs big core
speed up in terms of

Equation 1

(Exectime Atom / Exectime Xeon) remaining code after acceleration
represents the speed up obtained by migrating the post-
accelerated code from Atom to Xeon.
(Exectime Atom / Exectime Xeon) entire applications represents the
speed up obtained by migrating the application from Atom to
Xeon before acceleration.

Using equation 1, we can evaluate the impact of Atom
over Xeon speedup gain after acceleration compared to speed
up before acceleration. Most of the micro-benchmarks in
Figure 8 have speed up less than 1 which indicates that
speedup of Atom over Xeon after acceleration reduces
compared to speed up before acceleration. We have also
observed that most micro-benchmarks, with the increase in
data size the speedup after acceleration reduces compared to
the speedup before acceleration. However, there are several
exceptions to this trend, including GSP, RuleGrowth, Ecalt,
WordCount, and Spade where post acceleration code achieves

Figure 6 .1: DPS Analysis of different configurations of Hadoop micro-
benchmarks

Figure 6.2: DPJ Analysis of different configurations of Hadoop micro-

benchmarks

0

10

20

30

40

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

D
P

S
 (

M
B

/s
e

c)
WordCount

0

5

10

15

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

Sort

0

50

100

150

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

Grep

Atom Xeon

0
2
4
6
8

10
12

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

TeraSort

0

20

40

60

80

100

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

DFSIO-Write

0

50

100

150

200

1
0

1
0

0
1

0
0

0
1

0
0

0
0

2
5

0
0

0
5

0
0

0
0

Data Size(MB)

DFSIO-Read

0

0.5

1

1.5

2

10 10
0

10
00

10
00

0
25

00
0

50
00

0

Data Size(MB)

D
PJ

(M
B

/J
)

WordCount

0
0.2
0.4
0.6
0.8

1
1.2

10 10
0

10
00

10
00

0
25

00
0

50
00

0

Data Size(MB)

Sort

0

1

2

3

4
10 10

0
10

00
10

00
0

25
00

0
50

00
0

Data Size(MB)

Grep

Atom Xeon

0

5

10

15

20

25

10 10
0

10
00

10
00

0
25

00
0

50
00

0

Data Size(MB)

TeraSort

0

5

10

15

20

25

10 10
0

10
00

10
00

0
25

00
0

50
00

0

Data Size(MB)

DFSIO-Write

0

10

20

30

40

50

10 10
0

10
00

10
00

0
25

00
0

50
00

0

Data Size(MB)

DFSIO-Read

91

higher speed up on Xeon over Atom compared with pre-
acceleration code.

Overall, Xeon provides a lower execution time, however,
if speedup after acceleration is very small then considering the
power consumption of Xeon, Atom-based will be a more
efficient server to execute the post-accelerated code.
Observation: We study how offloading hotspot map and
reduce tasks to an accelerator such as FPGA affects the choice
of big vs. little core-based server for processing. The results
show that the choice of big vs. little before and after
accelerations is different. While most benchmarks clearly
favor little core post acceleration, in several applications post
accelerated code show higher speed up on big core-base server
over little core-base server compared to pre-acceleration.
5.5 Microarchitecture-Level Analysis

To provide insight into whether current server design
based on big and little core architectures requires improvement
in their microarchitecture parameters for efficient big data
processing, we perform a comprehensive microarchitecture
characterization and compare the results with traditional CPU,
PARSEC, and scaleout applications. Microarchitecture-level
characterization of big data applications on big and little core
architectures play a crucial role in identifying directions where
microarchitecture improvement is required. The details of the
observed parameters are explained below:
5.5.1 Instruction cache misses

Frequent cache misses decreases the fetch rate and
introduces stalls in the frontend of the pipeline. Fetch rate
reduction constraints the number of instructions that frontend
delivers to the backend for ILP extraction and therefore
increases the chance of the whole pipeline to be stalled.

Figure 9.1 presents the L1 Instruction cache misses per
kilo instructions (MPKI) on big and little cores. The average I-
cache MPKI of big data applications is at least 2.6 times higher
than the traditional benchmarks and 1.86 times higher than the
scale-out applications on Atom, while on Xeon it is 3.8 times
higher than traditional benchmarks and 4.76 times higher than
scale-out applications. In comparison to Xeon, Atom shows
two times higher I-cache MPKI in big data applications.
Figure 9.2 shows data sensitivity analysis of Hadoop micro-

benchmarks. Data sensitivity analysis results show an increase
in I-cache MPKI on both Xeon and Atom show an increase in
I-cache MPKI on both Xeon and Atom as the size of data
increases.
Observation. The general observation is that the instruction
working sets of most big data workloads exceed the L1
capacity of both Xeon and Atom processor. Fast cache access
demand restrains the architectural designer to increase the
instruction cache size. However, Xeon and Atom comparison
shows that a three-level compared to a two-level instruction
cache hierarchy just slightly mitigate instruction cache MPKI.
Increase in data size results in increasing the number of
dynamic instructions (as the number of iterations in many
loops in the code increases) leading to higher L1 instruction
cache misses. Current prefetchers rely on the repetitiveness
and sequential behavior of the instructions to predict the same
sequence in the future. Other possible factors leading to a high
I-cache misses are the huge code size and deep software
stacks, and relatively large number of system calls in big data
workloads. This behavior implies that higher I-cache
performance is demanded for big data workloads. Moreover,
low-end microarchitecture such as little Atom for big data
processing needs to include the instruction prefetchers that can
predict complex patterns with the advance replacement policy
to eliminate the wasted cycles caused by front-end stalls.
5.5.2 LLC cache misses
 Intel Xeon has a three-level cache hierarchy and Intel
Atom has a two-level hierarchy to reduce the gap between
processor and memory speed. In this study, we have analyzed
the LLC of both processors; L3 cache of Xeon and L2 cache of
Atom. Figure 10.1 shows the LLC MPKI on Atom and Xeon
for big data applications along the average LLC MPKI of
SPEC, PARSEC and Scale-Out applications. The average LLC
data cache MPKI of Big data is at least 2.5 times higher than
the traditional benchmarks and 3.8 times higher than Scale-Out
applications on Xeon. In contrast, Atom shows an opposite
behavior; SPEC experiences 3.25 times higher data MPKI than
big data on Atom. Moreover the average LLC data cache
MPKI of big data on Atom is 1.8 times higher than Xeon.
Figure 10.2 shows the data sensitivity analysis of Hadoop

Figure 7. Hotspot Analysis before acceleration (7.1) Big Data Applications (7.2) Different configurations of Hadoop micro-benchmarks

Figure 8: Speed up of Atom vs Xeon before and after acceleration (8.1) Big Data applications (8.2) Different configurations of Hadoop micro-benchmarks

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

X
e

o
n

A
to

m

PageRank LDA Cluster CF FPGrowth GSP RuleGrowth Eclat SPADE

Hotspot Analysis before Acceleration
Map+Reduce

libz.so.1.2.7

libpthread-2.17.so

[Compiled Java code]

[Dynamic code]

others

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Xeon Atom Xeon Atom Xeon Atom Xeon Atom Xeon Atom Xeon Atom

WordCount Sort Grep TeraSort DFSIO-write DFSIO-read

Hotspot Analysis before Acceleration Map+Reduce

libz.so.1.2.7

libpthread-2.17.so

[Compiled Java
code]
[Dynamic code]

others

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Sp
ee

du
p

af
te

r
ac

ce
le

ra
tio

n
vs

be

fo
re

 a
cc

el
er

at
io

n

0
0.2
0.4
0.6
0.8

1
1.2
1.4

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

Sp
ee

d
Up

 a
ft

er
 a

cc
el

er
at

io
n

vs

be
fo

re
 a

cc
el

er
at

io
n

92

micro-benchmarks on Xeon and Atom. Data MPKI in Atom
increases with the increase in data size, however Xeon shows
no clear trend.
Observation. We conclude that big data applications have
relatively good data locality and there are fewer computation
operations to memory access compared with traditional
benchmarks corroborating the observation in [3]. Furthermore,
this result shows that while three-level cache hierarchy with
the large size in Xeon processor has an advantage over Atom, a
small 4x1MB LLC cache in Atom is sufficient for many big

data applications to provide relatively low MPKI rate. In
addition, we observed that while in most cases increasing data
size increases LLC MPKI, there are exceptions that require
careful consideration when choosing the size of data to be
allocated to each node to reduce LLC MPKI.
5.5.3 Branch Misprediction
 Figure 11.1 and 11.2 presents the branch misprediction
results. The average misprediction in big data is 9.3%, while
that of SPEC, PARSEC and Scale-Out is 5.8%, 8.01% and
8.66% On Atom processor, respectively. In addition, on Xeon,

Figure 9: L1 Instruction MPKI (9.1) Big Data workloads (9.2): Different configurations of Hadoop micro-benchmarks

Figure 10: LLC Data MPKI (10.1) Big Data workloads (10.2) Different configurations of Hadoop micro-benchmarks

Figure 11: Branch Misprediction (11.1) BigData workloads (11.2) Different configurations of Hadoop micro-benchmarks

Figure 12: ITLB MPKI (12.1) Big Data workloads (12.2) Different configurations of Hadoop micro-benchmarks

Figure 13: DTLB MPKI (13.1) Big Data workloads (13.2) Different configurations of Hadoop micro-benchmarks

0

5

10

15

20

25

30

35

Ecl
at

Ru
leG

row
th GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
 Gr

ow
th CF

Clu
ste

rin
g

Wo
rdC

ou
nt1

0G
B

So
rt1

0G
B

Gr
ep

10
GB

Te
raS

ort
10

GB
DF

SIO
-w

rite
10

GB
DF

SIO
-re

ad
10

GB
Av

g_
Sp

ec
Av

g_
Pa

rse
c

Av
g_

Sca
leo

ut
Av

g_
Big

Da
ta

Ins
tru

cti
on

 M
PK

I

Atom Xeon

0
5

10
15
20
25
30
35

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

In
st

ru
ct

io
n

M
PK

I Atom Xeon

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

Ec
lat

Ru
le

Gr
ow

th GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
 G

ro
wt

h CF
Cl

us
te

rin
g

W
or

dC
ou

nt
10

GB
So

rt1
0G

B
Gr

ep
10

GB
Te

ra
So

rt1
0G

B
DF

SIO
-w

rit
e1

0G
B

DF
SIO

-re
ad

10
GB

Av
g_

Sp
ec

Av
g_

Pa
rs

ec
Av

g_
Sc

ale
ou

t
Av

g_
Bi

gD
at

a

LL
C

Da
ta

 M
PK

I

Atom Xeon

0

0.5

1

1.5

2

2.5

3

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

LL
C D

at
a M

PK
I

Atom Xeon

0
2
4
6
8

10
12
14
16

Ec
lat

Ru
leG

ro
wt

h
GS

P
SP

AD
E

Pa
ge

Ra
nk LD
A

FP
 G

ro
wt

h CF
Clu

ste
rin

g
W

or
dC

ou
nt

10
GB

So
rt1

0G
B

Gr
ep

10
GB

Te
ra

So
rt1

0G
B

DF
SIO

-w
rit

e1
0G

B
DF

SIO
-re

ad
10

GB
Av

g_
Sp

ec
Av

g_
Pa

rse
c

Av
g_

Sc
ale

ou
t

Av
g_

Big
Da

taBr
an

ch
 M

isp
re

dic
tio

n (
%) Atom Xeon

0
2
4
6
8

10
12
14
16

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

Br
an

ch
 M

is
pr

ed
ic

tio
n

(%
) Atom Xeon

0.
00

1

0.
00

1

0.
00

1

0.
00

3

0.
24

1

0.
27

4

0.
17

3

0.
21

7

0.
03

4

0.
78

4

0.
65

6

0.
37

8

0.
35

8

0.
16

0

0.
17

6

0.
00

00
01

0.
00

2

0.
08

1

0.
23

1

0
2
4
6
8

10
12
14
16

Ec
la

t
Ru

le
Gr

ow
th

GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
 G

ro
w

th CF
Cl

us
te

rin
g

W
or

dC
ou

nt
10

GB
So

rt1
0G

B
Gr

ep
10

GB
Te

ra
So

rt1
0G

B
DF

SI
O-

w
rit

e1
0G

B
DF

SI
O-

re
ad

10
GB

Av
g_

Sp
ec

Av
g_

Pa
rs

ec
Av

g_
Sc

al
eo

ut
Av

g_
Bi

gD
at

a

IT
LB

 M
PK

I

Atom Xeon

0.
14

0.
18

0.
28 0.
78

0.
15

0.
18

0.
23 0.
66

0.
16

0.
22

0.
21

0.
38

0.
09

0.
08

0.
12

0.
36

0.
19

0.
15

0.
16

0.
16

0.
19

0.
18

0.
25

0.
18

0
2
4
6
8

10
12
14
16

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

IT
LB

 M
PK

I

Atom Xeon

0
1
2
3
4
5
6
7
8

Ec
la

t
Ru

le
Gr

ow
th

GS
P

SP
AD

E
Pa

ge
Ra

nk LD
A

FP
 G

ro
w

th CF
Cl

us
te

rin
g

W
or

dC
ou

nt
10

GB
So

rt
10

GB
Gr

ep
10

GB
Te

ra
So

rt1
0G

B
DF

SI
O-

w
rit

e1
0G

B
DF

SI
O-

re
ad

10
GB

Av
g_

Sp
ec

Av
g_

Pa
rs

ec
Av

g_
Sc

al
eo

ut
Av

g_
Bi

gD
at

a

DT
LB

 M
PK

I

Atom Xeon

0
1
2
3
4
5
6
7
8

10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0 10 10
0

10
00

10
00

0

WordCount Sort Grep TeraSort DFSIO-Write DFSIO-Read

Data Size (MB)

DT
LB

 M
PK

I

Atom Xeon

93

average misprediction of big data is 5.9%, while that of SPEC,
PARSEC and Scale-Out is 2.7%, 2% and 2.3% respectively.
This shows that branch misprediction rate in big data is at least
1.2 times higher on Atom and 2.13 times higher on Xeon
compared with traditional benchmarks. In comparison, Atom
experiences 1.5 times higher branch misprediction than Xeon
processor. Figure 11.2 results show that the branch
misprediction rate does not change noticeably with changing
the data size.
Observation. Traditional CPU and parallel benchmarks
mainly having instruction working sets with tight loops (as in
matrix algebra), making them easy for the branch predictor to
predict correctly and reduce the misprediction rate. In big data
workloads, however, loops are seldom, and instead they fetch
record (LD), Match Key (CMP), and non-loop branches
(Branch to handler or BC) operations. This results in higher
branch misprediction rate and affects the application
performance by creating stalls in the pipeline.
5.5.4 TLB misses

TLB (Translation look-aside buffer) misses are costly, in
terms of both performance as well as power, taking up
hundreds of cycles to respond. We have reported the
Instruction TLB (ITLB) and Data TLB (DTLB) MPKI in
Figure 12 and Figure 13. Our results reveal that on Xeon big
data has the highest ITLB MPKI with the average of 0.23
while that of SPEC, PARSEC and Scale-Out is orders of
magnitude lower with an average of 7.44E-07, 0.0019, and
0.081 respectively. The average DTLB MPKI of big data is
just slightly higher than traditional benchmarks on Xeon,
however on Atom SPEC has noticeably higher DTLB MPKI
reading than others. On Xeon big data has the highest ITLB
and DTLB MPKI compared with the traditional benchmarks.
In contrast to this behavior SPEC is experiencing the highest
ITLB and DTLB MPKI on Atom. Moreover, Atom incurs
large ITLB MPKI as compared to Xeon, but lower DTLB
MPKI in comparison to Xeon. Figure 12.2 and Figure 13.2 are
showing the data sensitivity analysis of micro-benchmarks with
respect to ITLB MPKI and DTLB MPKI. Increasing data size
clearly increases the DTLB MPKI across both Atom and Xeon
in most benchmarks, however, it does not have a noticeable
impact on ITLB MPKI.
Observation. Overall, on Xeon, big data applications have an
order of magnitude lower ITLB miss rate compared to Atom,
however on Xeon they have an order of magnitude higher
ITLB miss rate compared to the traditional CPU benchmark.
While the results show TLB miss overhead management is
important in both Atom and Xeon for big data applications, the
large gap between big data applications and traditional CPU
benchmark on Xeon is calling for a big-data specific TLB
management technique. Also the results show that the size of
data affects DTLB miss rates in both architectures.

6. RELATED WORK
Recently, there have been a number of efforts to benchmark

and characterize big data and cloud-scale applications, mainly
on state-of-the-art high performance server platform. In
general, there are two major approaches for benchmarking big
data: A system benchmarking and a component benchmarking.
A system benchmark is an end-to-end benchmarking which

includes the entire database and application software stack,
including data preparation, data aggregation and data analytics.
A component benchmark encloses only a portion of the entire
end-to-end system [29].

The most prominent big data benchmarks, include
HiBench, Scale-Out, BigDataBench, CloudCmp, and
LinkBench. HiBench [30] is a benchmark suite for Hadoop
MapReduce. CloudCmp [31] use a systematic approach to
benchmark various components of the cloud to compare cloud
providers. LinkBench is a real-world database benchmark for
social network applications [32]. The Transaction Procession
Performance Council (TPC) has released a number of
benchmark suites in recent years, including TPC-C, TPC-E,
and TPC-DS for online transaction processing. BigDataBench
[2] was released very recently and includes online service and
offline analytics for web service applications. BigBench [4] is
a new big data benchmark that adopts TPC-DS as its basis and
expands it for offline analytics on Xeon high performance
server. The CloudSuite [3, 4] benchmark was developed for
Scale-Out cloud workloads and mainly includes small data
sets, e.g., 4.5 GB for Naïve Bayes.

Several prior researches have characterized traditional CPU
and parallel applications such as SPEC2006, PARSEC, and
NAS on high performance server-class processors [39]. It is
important to also compare the characteristics of big data
application with these traditional benchmark suites. We have
included the SPEC CINT2006, SPEC CFP2006 and PARSEC
2.1 benchmarks for the comparison with BigData Workloads.

This work is different from all above benchmarking and
characterization work as it perform a comprehensive system-
level (power, performance, EDXP, DPS and DPJ) and
microarchitecture-level(cache miss, TLB miss, branch
misprediction) analysis of various big data applications and
big data micro-benchmarks on two substantially different
platforms one with high performance big core and another
with low power little core to understand which of these two
architectures is the choice for efficient big data processing.

There have been also a number of research into
application-specific [34, 40] and domain-specific accelerators
[35, 36, 37]. Using tightly integrated FPGA [33] with CPU,
and GPU with CPU [27], to accelerate big data processing
have been proposed in recent work. While deploying
programmable accelerator is a new and hot research topic,
there has been little attention paid to how CPU designs should
be adapted to this change. To the best of our knowledge, the
only work on this topic is by Arora [29], which studied the
role of the CPU for a CPU+GPU architecture. They concluded
that, in a CPU+GPU architecture, the CPU is running a code
that is significantly different from a CPU-only code. They
found that the post-GPU code has a lower ILP, higher branch
miss prediction rate, and larger number of load and stores, and
benefits less from multiple cores, as there is less TLP after
GPU offloading. In this paper, we demonstrated how
deploying accelerator such as FPGA for big data affects the
choice of big vs. little core for efficient processing.

7. CONCLUSIONS
In this paper, we present a comprehensive system and

micro architecture-level analysis of big data applications on

94

two distinct server platforms; the conventional approach, a
high performance big Xeon core; and the new trajectory in
server design, a low power little Atom core, which advocates
the use of a low-power core to address the power challenge.

The characterization results show significantly larger
performance drop (37%, on average) for big data applications
compared to traditional CPU applications when running on big
core server compared to little core server. Big core-based
server provides a high performance, compared to little core,
however, it is not as power efficient. Little core-based server is
more efficient in terms of EDP for big data processing with
small data sizes. However, as the size of data increases and
with performance constraints, big core becomes an efficient
choice. The analysis of data processing capability and
efficiency of big data applications illustrates that the choice of
big core vs. little core-based server in terms of data processing
per second and data processing per joule is closely decided by
the application type, size of data, and computational and I/O
intensity of the application.

In addition, we performed the post-acceleration CPU code
analysis to find out the most efficient server architecture to
process the remaining code of big data applications. The results
show that there is a difference between the choice of big vs.
little core-based server before and after accelerations. While
most benchmarks clearly favor little core post acceleration,
several applications show higher speed up on big core over
little core post acceleration compared to pre-acceleration.

To provide insight on whether current server design based
on big and little core architectures requires improvement in
their microarchitecture parameters for efficient big data
processing, we perform a comprehensive microarchitecture
characterization and compare the results with traditional Spec,
PARSEC, and scaleout applications. Our analysis indicates
that the size of data has a non-trivial impact on several micro-
architecture parameters. Moreover, results show that while a
small 4x1MB two-level data cache is sufficient for big data
applications on little core the instruction cache hierarchy
pipeline needs improvement. Also little core needs
architectural improvement in instruction TLB miss overhead
management as well as branch predictor. Furthermore, the
analysis shows that the deep software stack of big data
applications, along with the excessive non-loop branches,
affects L1 cache hit rate and branch predictor accuracy in both
big and little cores. Moreover, big data applications require
efficient instruction prefetchers to predict complex patterns
and sophistication branch predictor to handle the unknown
control flow.

References
[1] Blem, E., et al., “Power struggles: Revisiting the RISC vs. CISC debate

on contemporary ARM and x86 architectures,” In HPCA2013, IEEE
19th International Symposium on (pp. 1-12).

[2] Gao,W. et al.,“BigDataBench: a Big Data Benchmark Suite from Web
Search Engines,”.ASBD 2013 in conjunction with ISCA 2013

[3] Ferdman, M., et al. "Clearing the clouds: a study of emerging scale-out
workloads on modern hardware," ACM SIGARCH Computer
 Architecture News40.1 (2012): 37-48.

[4] Ghazal, A. et al., “Bigbench: Towards an industry standard benchmark
for big data analytics,” In: ACM SIGMOD Conference (2013)

[5] Kontorinis, V., et al., “Managing distributed UPS energy for effective
power capping in data centers,” In 39th ISCA 2012.

[6] Gutierrez, A. et al. "Integrated 3D-stacked server designs for increasing
physical density of key-value stores." Proc. of 19th ASPLOS.ACM, 2014

[7] Reddi, V. J., et al., "Web search using mobile cores: quantifying and
mitigating the price of efficiency," ACM SIGARCH Computer
Architecture News38.3 (2010): 314-325.

[8] Homayoun, H., et al., “Dynamically heterogeneous cores through 3D
resource pooling,” In HPCA 2012.

[9] Andersen, D. G. et al. “FAWN: A Fast Array of Wimpy Nodes,”In the
Proceedings of ACM SIGOPS 22nd SOSP, pages 1–14, 2009.

[10] Hardavellas, Nikos, et al. "Toward dark silicon in servers." IEEE Micro
31.EPFL-ARTICLE-168285 (2011): 6-15.

[11] Kontorinis, V., et al., “Enabling Dynamic Heterogeneity Through Core-
on-Core Stacking,” The 51st Annual DAC 2014

[12] Willke, T.L., et al. "GraphBuilder–A Scalable Graph Construction
Library for Apache™ Hadoop™,” Big Learning WS at NIPS, 2012.

[13] Apache Mahout: scalable machine-learning and data-mining library
[14] Frequent Itemset Mining Dataset Repository; http://fimi.ua.ac.be/data/
[15] SPMF; http://www.philippe-fournier-viger.com/spmf/index.php?
[16] Intel VTune Amplifier XE Performance Profiler.

http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
[17] WattsUpPro power meter https://www.wattsupmeters.com/secure/index
[18] Nilakantan, S., et al. "Platform-independent analysis of function-level

communication in workloads." IISWC, IEEE, 2013.
[19] Accelerating Hadoop* Applications Using Intel® QuickAssist Tech.,

[online]
[20] Neshatpour, K, Malik, M., Ghodrat, M. A., Homayoun, H.,

“Accelerating Big Data Analytics Using FPGAs,” IEEE FCCM 2015
[21] James T Kukunas, et al. “High Performance ZLIB Compression on

Intel®Architecture Processors,” White paper, April 2014.
[22] Shan, Y., et al. “FPMR: Mapreduce framework on FPGA,” in Proc

Annual ACM/SIGDA Int Symp Field Programmable Gate Arrays, 2010
[23] T. Honjo and K. Oikawa, “Hardware acceleration of hadoop

mapreduce,” in IEEE Int. Conf. Big Data, Oct 2013, pp. 118–124.
[24] Z. Lin and P. Chow, “Zcluster: A zynq-based hadoop cluster,” in Int.

Conf. FPT, Dec 2013, pp. 450–453.
[25] Neshatpour, K, Malik, M., Homayoun, “Accelerating Machine Learning

Kernel in Hadoop Using FPGAs,” In 15th IEEE/ACM CCGrid 2015.
[26] Absalyamov, I., et al., "High-Performance XML Twig Filtering using

GPUs," ADMS@ VLDB. 2013.
[27] Baru, C., et al. “Setting the Direction for Big Data Benchmark

Standards”,Lecture Notes in Computer Science
[28] Khavari Tavana, et al., “Energy-efficient mapping of biomedical

applications on domain-specific accelerator under process variation,”
ISLPED'14

[29] Arora, Manish, et al. "Redefining the Role of the CPU in the Era of
CPU-GPU Integration," Micro, IEEE 32.6 (2012): 4-16.

[30] Huang, S., et al. "The HiBench benchmark suite: Characterization of the
MapReduce-based data analysis," In the proc. of 26th ICDEW, 2010

[31] Li,A.,et al. “CloudCmp: comparing public cloud providers,” ACM,’10
[32] Armstrong, et al. "Linkbench: a database benchmark based on the

facebook social graph," Proceedings of the ACM SIGMOD, 2013.
[33] Xi Luo, Walid A. Najjar, Vagelis “Hristidis: Efficient near-duplicate

document detection using FPGAs,” BigData 2013
[34] YU, P. et al. “Disjoint pattern enumeration for custom instructions

identification,” In Proceedings of the FPL’07, 273–278.
[35] ARNOLD, M. et al. “Designing domain-specific processors,” In

Proceedings of the 9th CODES. ACM 2001.
[36] Li, T., et al. "Fast enumeration of maximal valid subgraphs for custom-

instruction identification," Proceedings of the CASES. ACM, 2009.
[37] Arora, N, et al. "Instruction selection in asip synthesis using functional

matching," VLSI Design, 2010.
[38] http://www.chipestimate.com/tech-talks/2013/07/16/Cadence-5-Emer

ging-DRAM-Interfaces-You-Should-Know-for-Your-Next-Design-
[39] T. K. Prakash et al. “Performance Characterization of SPEC CPU2006

Benchmarks on Intel Core 2 Duo Processor,” In ISAST 2008.
[40] YU, P., et al. “Scalable custom instructions identification for instruction-

set extensible processors,” In Proc. of the CASES’04. ACM, New York.
[41] Neshatpour, K, Malik M., Ghodrat, M. A., Sasan, A., Homayoun, H.,

“Energy-Efficient Acceleration of Big Data Analytics Applications
Using FPGAs,” BigData 2015

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

