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Abstract— Emerging Big Data applications require a significant 
amount of server computational power. Big data analytics 
applications rely heavily on specific deep machine learning and 
data mining algorithms, and exhibit high computational intensity, 
memory intensity, I/O intensity and control intensity. Big data 
applications require computing resources that can efficiently scale 
to manage massive amounts of diverse data. However, the rapid 
growth in the data yields challenges to process data efficiently 
using current server architectures such as big Xeon cores. 
Furthermore, physical design constraints, such as power and 
density, have become the dominant limiting factor for scaling out 
servers. Therefore recent work advocates the use of low-power 
embedded cores in servers such as little Atom to address these 
challenges. In this work, through methodical investigation of power 
and performance measurements, and comprehensive system level 
and micro-architectural analysis, we characterize emerging big 
data applications on big Xeon and little Atom-based server 
architecture. The characterization results across a wide range of 
real-world big data applications and various software stacks 
demonstrate how the choice of big vs little core-based server for 
energy-efficiency is significantly influenced by the size of data, 
performance constraints, and presence of accelerator. 
Furthermore, the microarchitecture-level analysis highlights where 
improvement is needed in big and little cores microarchitecture. 

Index Terms—Performance, Power, Characterization, Big Data, High-
Performance server, Low-Power server, Accelerator 

1. INTRODUCTION 
 Advances in various branches of technology – data sensing, 
data communication, data computation, and data storage – are 
driving an era of unprecedented innovation for information 
retrieval. The world of Big Data is constantly changing and 
producing huge amounts of data that creates challenges to 
process the applications using existing solutions. Big data 
applications require computing resources and storage 
subsystems that can scale to manage massive amounts of 
diverse data. Individuals, businesses, governments, and society 
as a whole now have access to enormous collections of big 
data, empowering them to build their own analytics. 
Datacenters are therefore required to introduce more nodes to 
their infrastructure or replace their existing hardware with more 
powerful systems to respond to this growing demand. This 
trend increases the infrastructure cost and power consumption. 
We believe this is the right time to identify the right computing 
platform for Big Data analytics processing that can provide a 
balance between processing capacity and power efficiency. 

Emerging data applications, in particular from web 
service domain, share many inherent characteristics that are 
fundamentally different from traditional desktop, parallel, and 
scale-out applications [2]. Big data analytics applications in 
these domains heavily rely on big-data-specific deep machine 

learning and data mining algorithms, and are running complex 
database software stack with significant interaction with I/O 
and OS, and exhibit high computational intensity, memory 
intensity, I/O intensity and control intensity. In addition, 
unlike conventional CPU applications, big data applications 
combine a high data rate requirement with high computational 
power requirement, in particular for real-time and near-time 
performance constraints. 

This new set of characteristics is necessitating a change in 
the direction of server-class microarchitecture to improve their 
computational efficiency. However, while demand for data 
center computational resources continues to grow as the size 
of data grows, the semiconductor industry has reached its 
physical scaling limits and is no longer able to reduce power 
consumption in new chips. Physical design constraints, such 
as power and density, have therefore become the dominant 
limiting factor for scaling out data centers [3, 4, 5, 6]. Current 
server designs, based on commodity homogeneous processors, 
will therefore not be the most efficient in terms of 
performance/watt to process big data applications [6, 7]. In 
this work we show that while high performance big cores are 
optimized for traditional CPU applications, for big data they 
are very inefficient and are not satisfying their computational-
efficiency requirements. 

In exploring the choice of server architecture for big data, 
in this paper, we present a comprehensive analysis of the 
measurement of power and performance of big data 
applications on two very distinct microarchitectures; a high 
performance big Xeon core and another a low power 
embedded-like little Atom core. These two types of servers 
represent two schools of thought on server architecture design: 
using big core like Xeon, which is a conventional approach to 
designing a high-performance server, and the Atom, which is 
a new trajectory in server design that advocates the use of a 
low-power core to address the dark silicon challenge facing 
servers [7, 8, 9, 10, 11]. In addition to power and performance 
study, we have also performed the Energy-DelayX Product 
(EDXP) analysis to evaluate the trade-off between power and 
performance to understand how near real-time performance 
constraints for big data analytics affects the choice of big vs. 
little core server as a more efficient architecture. As for big 
data applications, achieving a higher processing rate of large 
amount of data is a prime target, so we have evaluated the 
processing capability under different data size (per node) by 
using two metrics – Data Processed Per Second (DPS) and 
Data Processed Per Joule (DPJ). The analysis helps us 
understand how the choice of big vs. little cores introduces 
significant tradeoff in performance, power, energy-delay, and 
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processing capacity for efficient and near-time processing of 
big data applications. The results demonstrate that while in 
most applications, server with little cores is more efficient in 
terms of EDP and DPJ, with constraints for near real-time 
performance the most efficient server architecture depends on 
the data size and the type of application. 

As chips are hitting power limits, computing systems are 
moving away from general-purpose designs and toward 
greater specialization. Hardware acceleration through 
specialization has received renewed interest in recent years, 
mainly due to the dark silicon challenge. To find out the right 
architecture for big data processing, it is important to 
understand how deploying an accelerator, such as FPGA, 
would necessitate adapting the choice of big vs. little cores. 
The post acceleration code characteristics are important to find 
the right architecture for efficient processing of big data 
applications. For this purpose, we analyze the choice of big vs. 
little core-based servers for the code that remains for the CPU 
after assuming the hotspots are offloaded to an accelerator, 
compared with the choice of big vs. little before acceleration. 

Overall, our characterization results across a wide range 
of real-world big data applications and various software stacks 
demonstrate how the choice of big vs little core-based servers 
for energy-efficiency is significantly influenced by the size of 
data, performance constraints, and presence of accelerator. 

To provide insight into whether current design of big and 
little core requires improvement in the microarchitecture 
parameters for efficient big data processing we further perform 
a comprehensive microarchitecture characterization. This study 
assists in determining whether big data workloads require 
innovation in microprocessor microarchitecture design. 
Contributions: This paper makes the following key 
contributions: 

• We analyze the measurements of performance and power of 
Big Data applications on two state-of-the-art server 
platforms, one with IntelTM Xeon; Big cores and the other 
with IntelTM Atom; Little cores. We compare the results with 
traditional CPU, parallel and scaleout applications.  

• We analyze the performance of hotspot tasks involve in an 
end-to-end big data analytics running various software 
stacks including Hadoop MapReduce and Apache Mahout. 
This includes read and write to HDFS, sorting, compression 
and decompression, mapping and reduction and calling 

several standard libraries.  
• We demonstrate how the size of data, type of application 

(e.g. I/O intensive and compute Intensive), and performance 
constraints affect the choice of big vs little core-based 
servers for efficient big data processing. 

• We show how offloading map and reduce tasks to an 
accelerator such as FPGA affects the choice of big vs. little 
core-based servers for the remaining code on the CPU. 

• We perform a comprehensive microarchitecture analysis to 
find the performance bottlenecks in both big and little cores 
when running big data applications. 

 The rest of the paper is organized as follows. Section 2 
provides background for big data. Section 3 describes the 
studied big data, scale-out and Traditional serial and parallel 
CPU benchmarks. Our methodology and experimental setup 
details are presented in section 4. Section 5 presents the 
experimental results and provides system level analysis along 
the micro-architectural characterization of big data 
applications. Section 6 provides the related work. Lastly, 
section 7 concludes the paper. 

2. BACKGROUND ON BIG DATA APPLICATIONS 
  The “cloud” is a new platform that has been used to cost 
effectively deploy an increasingly wide variety of applications. 
Vast amount of data is now stored in a few places rather than 
distributed across a billion isolated computers, therefore creates 
opportunities to learn from the aggregated data. The rise of 
cloud computing and cloud data storage, therefore, has 
facilitated the emergence of big data applications. Big data 
applications are characterized by four critical features, referred 

 
Figure 1: Illustration of Four “Vs” of Big Data 
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as the four “Vs”, shown in Figure 1 [38]: volume, velocity, 
variety, and veracity. Big data is inherently large in volume. 
Velocity refers to how fast the data is coming in and to how 
fast it needs to be analyzed. In other words, velocity addresses 
the challenges related to processing data in real-time. Variety 
refers to the number and diversity of sources of data and 
databases, such as sensor data, social media, multimedia, text, 
and much more. Veracity refers to the level of trust, 
consistency, and completeness of data. Traditionally, cloud 
servers mainly use high performance CPU cores such as Xeon. 
However, low-power embedded cores such as Atom are 
gradually entering the server market. Therefore, it is important 
to characterize emerging big data applications on these two 
different platforms to understand their computational need and 
architectural bottlenecks.  

3. DOMINANT BIG DATA WORKLOADS 
 The studied big data workloads in this paper are 
representative programs from 15 different domains such as 
graph mining, data mining, data analysis platform and pattern 
searching applications, which are frequently used in the real 
world. We provide these selected applications, along with their 
particular domain and data type in Table 1.  

3.1 Big data Workload 
3.1.1 Hadoop Microbenchmark. Apache Hadoop is an open-
source Java-based framework of MapReduce implementation. 
It assists the processing of large datasets in a distributed 
computing environment and stores data in highly fault-tolerant 
distributed file system, HDFS. Hadoop has numerous micro-
benchmarks from which we have included a combination of 
I/O intensive and CPU intensive applications as follows: 
• WordCount reads text files and determines how often the 

words appear in a set of files. Wordcount is a CPU 
intensive application [30]. 

• Sort uses the map/reduce framework to sort the input 
directory in the output directory. The actual sorting occurs 
in the internal shuffle and sort phase of MapReduce. The 
data is transferred to reducer that is an identity function. 
Sort is an I/O intensive application [30]. 

• Grep extracts matching strings provided by user from text 
files and sorts matching strings by their frequency. Grep is 
a CPU intensive application. 

• TeraSort performs a scalable MapReduce-based sort of 
input data. It first samples the input and computes the 
input distribution by calculating the quantiles equal to the 
number of reduces that uses a sorted list of N-1 sampled 
keys to define the key range for each reduce. TeraGen 
command generates the large random data for TeraSort. 
[30].  

• TestDFSIO-write/read is a storage throughput test that is 
divided into two parts, TestDFSIO-Write and TestDFSIO-
Read to write and read data to/from HDFS, respectively. 

3.1.2 GraphMining. Graph construction can be very 
challenging because of complex iterative and data-dependent 
nature of the graph. Hadoop is well suited for this task, but 
requires expertise to handle graph complexities. GraphBuilder 
addresses this challenge by providing a scalable graph 
construction software library for Hadoop. GraphBuilder 

constructs graphs for PageRank and LDA algorithms 
implemented on PowerGraph [12]. 
3.1.3 Collaborative Filtering (CF) Recommendation is a 
technique used by many recommender systems to predict the 
preference of users based on their previous rating history [13]. 
3.1.4 Clustering is one of the fundamental tasks in Data 
Mining. Clustering assembles data items into groups based on 
their similar features. We have analyzed meanshift clustering 
as it is a non-parametric clustering technique that does not 
require prior knowledge of the number of clusters [13].  
3.1.5 Association Rule Mining is a well-known approach for 
exploring association between various parameters in large 
databases. We have analyzed FP (Frequent Pattern)-Growth; a 
resource intensive program that aims to determine item sets in 
a group and identifies which items typically appear together 
[13,14].  
3.1.6 Sequential Pattern Mining Framework (SPMF) is an 
open-source data mining library written in Java. It offers 
numerous data mining algorithms for sequential pattern, rule 
mining and frequent item mining [15] for which we have 
selected Equivalence Class Transformation (Eclat), 
RuleGrowth, Generalized Sequential Pattern (GSP) and 
Sequential Pattern Discovery using Equivalence classes 
(SPADE). 

3.2 Scale-Out Workloads 
3.2.1 Classification technique learns from the existing 
categorizations and groups the unclassified items to the best 
corresponding category [3]. 
3.2.2 Graph-analysis is performed by implementing the 
TrunkRank on GraphLab [3]. This application studies the 
impact of a Twitter user for graph analysis.  
3.2.3 DataCaching. Memcached is a high-performance, 
general-purpose distributed memory caching system. It uses in-
memory key-value storage mechanism for small chunks of 
arbitrary data API calls [3].  

3.3 Traditional CPU Benchmarks 
3.3.1 SPEC CPU2006 workloads are industry standard real-
life applications designed to stress the CPU, memory 
subsystem and compiler. 
3.3.2 PARSEC 2.1 is an open-source parallel benchmark suite 
for evaluating multi-core and multiprocessor systems. 

4. MEASUREMENT TOOLS AND METHODOLOGY 
Figure 2 presents a methodology of our approach. We 

conduct our study on two state-of-the-art servers, Intel Xeon 
and Intel Atom. Intel Xeon E5 enclosed with two Intel E5-2420 
processors that includes six aggressive processor cores per 
node with three-level of the cache hierarchy. Intel Atom C2758 
has 8 processor cores per node and a two-level cache hierarchy. 
Table 2 summarizes the key architectural parameters of these 
two servers. The operating system used is Ubuntu 13.10 with 
Linux kernel 3.11. 

We analyze the architectural behavior using Intel VTune 
[16], a performance-profiling tool that provides an interface to 
the processor performance counters. We have used Watts up 
PRO power meter to measure the power consumption of the 
servers [17]. Wattsup power meter produces the power 
consumption profile every one second of an application under 
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test. The power reading is for the entire system, including core, 
cache, main memory, hard disks and on-chip communication 
buses. We have collected the average power consumption of 
the studied applications and subtracted the system idle power 
to calculate the dynamic power dissipation of the entire energy 
analysis. The same methodology is used in [1] as well. 

We discuss the system-level - performance, power, EDP- 
and microarchitecture-level analysis - cache misses, branch 
misprediction and TLB misses- for big data applications and 
Hadoop micro-benchmarks. In addition, Table 1 shows the 
datasets used to drive the studies applications. 

5. EXPERIMENTAL RESULTS AND ANALYSIS 
In this section, we discuss the system-level and micro-

architecture-level analysis of little and big cores, when running 
traditional CPU benchmarks, parallel benchmarks, scale-out, 
and big data applications. Due to space constraints, we are only 
reporting the average results for SPEC, PARSEC and Scale-
Out applications. Moreover, we have conducted the data size 
sensitivity analysis of Hadoop micro-benchmarks with the 
dataset of 10MB, 100MB, 1GB and 10GB per node to 
understand the impact of the size of data per processing node 
on system-level as well as microarchitecture-level parameters. 
5.1 Performance Analysis 
     In this section, we analyze the performance measurements 
of big data applications in term of IPC and compare it with the 
traditional benchmarks. Figure 3.1 presents that the average 
IPC of big data is 1.65 times lower than the traditional CPU 
benchmarks on big core and 1.21 times on little core. 
Therefore, noticeably more performance drop (37%, on 
average) is observed for big data applications compared to 
traditional CPU applications when running on big core server 
compared to little core server.  In general, we observe lower 
IPC in big data applications compared with the traditional 
benchmarks. Furthermore, little core-based server is 
experiencing 1.43 times lower IPC in comparison to big core 
server as Xeon can process up to 4 instructions simultaneously 
while Atom is limited to 2 instructions per cycle. Figure 3.2 
shows the IPC of Hadoop micro-benchmarks for different data 
sizes. The results are consistent with the results in Figure 3.1 
showing lower IPC on little core compared to big core across 
all data sizes. We also observe that on little core, increasing the 
data size reduces the IPC since the cache misses increases 
(mainly Icache miss as will be described in section 5.5.1). 

Little core, due to its low processing capacity (issue width of 
2), cannot hide cache miss penalty as effective as big core. 
However, on big core while for most cases, increase in data 
size per node reduces the IPC, there are few exceptions where 
increasing the data size from 100MB to 1000MB per node 
increases the IPC. This is mainly due to higher cache locality 
as a result of larger and more complex cache subsystem in big 
core, which results in reduction in cache miss rates (more on 
this in section 5.5.1). 
5.2 Power Consumption and Energy-Efficiency Analysis 
 In this section, we report the power consumption of big 
data applications and discuss the energy-efficiency analysis to 
evaluate the trade-off between power and performance. 
5.2.1 Power Characterization 

Figure 4.1 shows the average dynamic power consumption 
of the studied applications on big and little core servers. The 
idle power of the servers is subtracted from the measured (run-
time) power. Note that the power results reported are for the 
entire system, including core, cache, DRAM and on-chip 
communication buses. Big core consumes on average 35 
Watts of dynamic power with the peak of 44 Watts in cluster 
application. Little core consumes much lower dynamic power 
as expected, ranging from 0.9 to 6 Watts with an average of 
4.8 Watts. Figure 4.2 shows that the power consumption 
increases as the size of data per node increases in most cases 
across both big and little architectures. This is more noticeable 
in little core. While increasing in data size in little core 
reduces the IPC and therefore core power, it increases cache 
and off-chip traffic in DRAM and bus subsystem (see LLC 
MPKI reported in Figure 10). Therefore, for low-end little 
core where cache, DRAM and off-chip components are 
dominant power consumer (unlike high performance Xeon 
core), a clear rise in power consumption is observed as the 
size of data increases. 
5.2.2 Energy-Efficiency Analysis with near Real–Time 

Processing Constraints 
 Based on the results of power consumption for both 
platforms, we have evaluated the trade-off between power and 
performance by investigating the EDP metric. Furthermore, we 
have explored the ED2P and ED3P to understand the impact of 
near real-time performance constraints on big data applications 
and how more constraints on performance affects the choice of 
most efficient server architecture. Figure 5.1 illustrates EDP, 
ED2P and ED3P ratio for big vs little cores. The EDXP 

Figure 2: Methodology 
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Table 2: Architectural Parameters 
Processor Intel Atom C2758 Intel Xeon E5-2420 

Operating Frequency 2.40GHz 1.9GHz 

Micro-architecture Silvermont Sandy Bridge 

L1i Cache 32 KB 32 KB 

L1d Cache 24 KB 32 KB 

L2 Cache 4*1024 KB 256KB 

L3 Cache - 15MB 

PageTable 16972 KB 4260 KB 

System Memory 8GB 32GB 

TDP 20W 95W 
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(X=1,2,3) results show that big core-based server is noticeably 
more efficient for traditional CPU applications compared with 
big data. Also, interestingly for scale out benchmarks, little 
core is always more efficient than big core for EDP, ED2P and 
ED3P metrics. For real-world big data applications EDP results 
show that the little core-based server is almost always a more 
efficient platform for CPU intensive applications. However, for 
heavy I/O intensive applications such as sort and terasort, for 
large data sizes (10000MB), the big core becomes more 
efficient than the little core in terms of EDP. Complex memory 
subsystem in big core along with higher processing capacity 
(2X more than little core) allows big core to be more effective 
in hiding the cost of high I/O communication in these 
applications and can explain why big core-based server is more 
efficient. However, with more near real-time performance 
constraints, i.e. for ED2P and ED3P metrics, big core becomes 
more efficient compared to little cores across most 
applications. Figure 5.2 presents the data sensitivity analysis of 
Hadoop micro-benchmarks. The increase in the data size, 
progressively makes the big core more efficient compared with 
little core, however the point where big core becomes more 
efficient than little core varies across applications and depends 
on the data size and the performance constraint. 
Observation. The results illustrate that little core server is 
more efficient in terms of EDP for big data applications with 
the smaller data sizes. However, as the size of data increases 
and with more performance constraints big core server 
becomes more efficient.  
5.3 DPS-DPJ Analysis 

In this section, we evaluate the data processing capability 
of big and little core-based server for various data sizes in 

Hadoop micro-benchmarks. We report the data processed per 
second (DPS) and the data processed per joule (DPJ) metrics 
to compare the data processing capability and efficiency of the 
two server architectures.  

The results are reported in Figure 6.1 and Figure 6.2. For  
most applications, on both big and little platforms with an 
increase in the data size the DPS first rises rapidly to a peak 
and then declines slightly. The data size at which the peak 
DPS occurs varies across applications and architectures. The 
two metrics, DPS and DPJ, also help to guide MapReduce 
scheduling decision. The peak DPS occurs in terasort and sort 
at only 1000MB of size, while in other applications occurs in 
at least an order of magnitude larger data size. The reason is 
that sort and terasort are I/O intensive applications and the rise 
in data size exacerbates the I/O cost to an extent that it 
diminishes the benefit of high processing capacity. The DPS 
difference between big and little cores-based server is 
becoming larger for CPU intensive applications such as grep 
and wordcount as the size of data increases. However, this is 
not the case for I/O intensive applications such as sort and 
DFSIO-read as the I/O cost becomes the dominant 
performance bottleneck and the processing capacity of the 
processor; i.e. big vs. little become a less important factor. 
Overall, for small data size, below 1000MB per node, the two 
architectures, big and little, have almost similar processing 
capacity in terms of DPS, and it is only for large data sizes 
that the DPS gap between the two becomes clear. 

Similar to DPS, for DPJ, in all applications we observe a 
rise in data processing efficiency on big core as the size of 
data increases.  However, in I/O intensive applications such as 
terasort, DFSIO-read and write, the rise in DPJ on Xeon is 

            
Figure 3: IPC (3.1) Big Data workloads                        (3.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 4: Power Reading (4.1) Big Data workloads                (4.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 5: EDP, ED2P and ED3P Analysis (5.1) Big Data Workloads (5.2) Different configurations of Hadoop micro-benchmarks 
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insignificant. For CPU intensive applications including   
wordcount and grep there is a significant rise in DPJ on Xeon 
as the size of data increases.  

Overall, for I/O intensive applications such as sort, 
terasort, DFSIO-write and DFSIO-read, Atom-based server is 
noticeably more efficient than big Xeon. However, in CPU 
intensive micro-benchmarks, WordCount and Grep, the DPJ 
gap between big and little core-based server reduces with the 
increase in data size. It is also interesting to observe that the 
DPJ of Xeon can exceed Atom in a number of applications 
and across a number of different data sizes.  
Observation-The results illustrate that the choice of big vs 
little core-based servers in terms of DPS and DPJ analysis are 
closely decided by the application type and the size of data.  
5.4 Performance Hotspot and Post-Acceleration CPU code 

Characterization 
As chips are hitting power limits, computing systems are 

moving away from general-purpose designs and toward 
greater specialization. Hardware acceleration through 
specialization has received renewed interest in recent years, 
mainly due to the dark silicon challenge. In addition to big, 
medium, and small cores, the integration of domain-specific 
accelerators, such as GPUs and FPGAs has become extensive. 

To find out the right server architecture for big data 
processing, it is important to understand how deploying an 
accelerator, such as FPGA, would necessitate adapting the 
choice of CPU. The post acceleration code characteristics are 
important to find the right architecture for efficient processing 
of big data applications. In this section, we analyze the choice 
of big vs. little core-based server for the code that remains for 
the CPU after acceleration, compared with the choice of big 
vs. little before acceleration.  

A key research challenge for heterogeneous architecture 
that integrates CPU and accelerator such as FPGA is workload 
partitioning and mapping of a given application (which is 
alternatively referred to as scheduling) to CPU and FPGA for 
power, performance, and QoS. This is commonly referred as 
hardware and software partitioning. A common method for 
HW/SW partitioning is to profile the application to find the 
performance hotspot region. These regions are candidates for 
FPGA acceleration, as long as the overhead of communication 
with CPU is not significant [18]. 

To perform hotspot analysis on big data applications, we 
use Intel Vtune to select the common hotspot modules of the 
applications running on big and little cores. First, we identify 

and analyze hotspot modules based on their execution time. 
Figure 7.1 shows the common hotspot modules of big data 
applications and Figure 7.2 presents Hadoop micro-benchmark 
hotspots with a data size of 1GB on Big and Little cores, 
respectively. Map and Reduce tasks represent the computation 
part to perform the task, such as grep, sort and etc. Libz is 
performing the compression and decompression task (library) 
for the Hadoop workload.  Module dynamic contains hotspot 
functions such as java-finalize to perform the completion tasks 
of an object. Compiled java code includes the java.lang.string 
class to represent character strings along with the 
system.array, copy, math, abstractSringBuilder and object 
classes. Libpthread contained functions like mutex 
lock/unlock for the thread creation and protection and 
cond_wait functions to block on a condition variable.  

We have also collected the IPC for each of these hotspot 
functions. Due to space limitation, we do not show the details 
of the IPC results. The results show that the performance gap 
between big and little cores for Map and Reduce task is 2X. 
This large gap shows that big core has a clear advantage over 
little core to run these hotspot functions. Since the hotspot 
functions and their corresponding libraries are taking up most 
of execution time, they are candidate for acceleration, for 
instance with offloading mapper and reducer tasks to FPGAs 
[19, 20, 21, 25, 28]. Several recent works have demonstrated 
the potential of offloading map and reduce tasks to FPGA 
platforms [22, 23, 24, 41].  

To analyze post-accelerated code and the choice of server 
architecture, we assume map and reduce tasks are offloaded to 
an accelerator [22, 23, 24].  We do not make any assumption 
about the speedup gain on accelerator nor the cost of 
offloading to the accelerator. By taking out the time it takes to 
run hotspot function, we can study the remaining modules that 
are left for the big or little core-based server to run. 

Figure 8 shows the impact of post-accelerated code by 
investigating the speed up - migrating from Atom to Xeon 
before and after acceleration. We report the little vs big core 
speed up in terms of 

Equation 1 

(Exectime Atom / Exectime Xeon) remaining code after acceleration 
represents the speed up obtained by migrating the post-
accelerated code from Atom to Xeon.  
(Exectime Atom / Exectime Xeon) entire applications represents the 
speed up obtained by migrating the application from Atom to 
Xeon before acceleration.  

Using equation 1, we can evaluate the impact of Atom 
over Xeon speedup gain after acceleration compared to speed 
up before acceleration. Most of the micro-benchmarks in 
Figure 8 have speed up less than 1 which indicates that 
speedup of Atom over Xeon after acceleration reduces 
compared to speed up before acceleration. We have also 
observed that most micro-benchmarks, with the increase in 
data size the speedup after acceleration reduces compared to 
the speedup before acceleration. However, there are several 
exceptions to this trend, including GSP, RuleGrowth, Ecalt, 
WordCount, and Spade where post acceleration code achieves 

Figure 6 .1: DPS Analysis of different configurations of Hadoop micro-
benchmarks

 
Figure 6.2: DPJ Analysis of different configurations of Hadoop micro-

benchmarks 
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higher speed up on Xeon over Atom compared with pre-
acceleration code.  

Overall, Xeon provides a lower execution time, however, 
if speedup after acceleration is very small then considering the 
power consumption of Xeon, Atom-based will be a more 
efficient server to execute the post-accelerated code. 
Observation: We study how offloading hotspot map and 
reduce tasks to an accelerator such as FPGA affects the choice 
of big vs. little core-based server for processing. The results 
show that the choice of big vs. little before and after 
accelerations is different. While most benchmarks clearly 
favor little core post acceleration, in several applications post 
accelerated code show higher speed up on big core-base server 
over little core-base server compared to pre-acceleration. 
5.5 Microarchitecture-Level Analysis 

To provide insight into whether current server design 
based on big and little core architectures requires improvement 
in their microarchitecture parameters for efficient big data 
processing, we perform a comprehensive microarchitecture 
characterization and compare the results with traditional CPU, 
PARSEC, and scaleout applications. Microarchitecture-level 
characterization of big data applications on big and little core 
architectures play a crucial role in identifying directions where 
microarchitecture improvement is required. The details of the 
observed parameters are explained below:  
5.5.1 Instruction cache misses 

Frequent cache misses decreases the fetch rate and 
introduces stalls in the frontend of the pipeline. Fetch rate 
reduction constraints the number of instructions that frontend 
delivers to the backend for ILP extraction and therefore 
increases the chance of the whole pipeline to be stalled. 

Figure 9.1 presents the L1 Instruction cache misses per 
kilo instructions (MPKI) on big and little cores. The average I-
cache MPKI of big data applications is at least 2.6 times higher 
than the traditional benchmarks and 1.86 times higher than the 
scale-out applications on Atom, while on Xeon it is 3.8 times 
higher than traditional benchmarks and 4.76 times higher than 
scale-out applications. In comparison to Xeon, Atom shows 
two times higher I-cache MPKI in big data applications. 
Figure 9.2 shows data sensitivity analysis of Hadoop micro-

benchmarks. Data sensitivity analysis results show an increase 
in I-cache MPKI on both Xeon and Atom show an increase in 
I-cache MPKI on both Xeon and Atom as the size of data 
increases. 
Observation. The general observation is that the instruction 
working sets of most big data workloads exceed the L1 
capacity of both Xeon and Atom processor. Fast cache access 
demand restrains the architectural designer to increase the 
instruction cache size. However, Xeon and Atom comparison 
shows that a three-level compared to a two-level instruction 
cache hierarchy just slightly mitigate instruction cache MPKI. 
Increase in data size results in increasing the number of 
dynamic instructions (as the number of iterations in many 
loops in the code increases) leading to higher L1 instruction 
cache misses. Current prefetchers rely on the repetitiveness 
and sequential behavior of the instructions to predict the same 
sequence in the future. Other possible factors leading to a high 
I-cache misses are the huge code size and deep software 
stacks, and relatively large number of system calls in big data 
workloads. This behavior implies that higher I-cache 
performance is demanded for big data workloads. Moreover, 
low-end microarchitecture such as little Atom for big data 
processing needs to include the instruction prefetchers that can 
predict complex patterns with the advance replacement policy 
to eliminate the wasted cycles caused by front-end stalls. 
5.5.2 LLC cache misses  
       Intel Xeon has a three-level cache hierarchy and Intel 
Atom has a two-level hierarchy to reduce the gap between 
processor and memory speed. In this study, we have analyzed 
the LLC of both processors; L3 cache of Xeon and L2 cache of 
Atom. Figure 10.1 shows the LLC MPKI on Atom and Xeon 
for big data applications along the average LLC MPKI of 
SPEC, PARSEC and Scale-Out applications. The average LLC 
data cache MPKI of Big data is at least 2.5 times higher than 
the traditional benchmarks and 3.8 times higher than Scale-Out 
applications on Xeon. In contrast, Atom shows an opposite 
behavior; SPEC experiences 3.25 times higher data MPKI than 
big data on Atom. Moreover the average LLC data cache 
MPKI of big data on Atom is 1.8 times higher than Xeon. 
Figure 10.2 shows the data sensitivity analysis of Hadoop 

    
Figure 7. Hotspot Analysis before acceleration (7.1) Big Data Applications (7.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 8: Speed up of Atom vs Xeon before and after acceleration (8.1) Big Data applications (8.2) Different configurations of Hadoop micro-benchmarks 
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micro-benchmarks on Xeon and Atom. Data MPKI in Atom 
increases with the increase in data size, however Xeon shows 
no clear trend.  
Observation. We conclude that big data applications have 
relatively good data locality and there are fewer computation 
operations to memory access compared with traditional 
benchmarks corroborating the observation in [3]. Furthermore, 
this result shows that while three-level cache hierarchy with 
the large size in Xeon processor has an advantage over Atom, a 
small 4x1MB LLC cache in Atom is sufficient for many big 

data applications to provide relatively low MPKI rate. In 
addition, we observed that while in most cases increasing data 
size increases LLC MPKI, there are exceptions that require 
careful consideration when choosing the size of data to be 
allocated to each node to reduce LLC MPKI. 
5.5.3 Branch Misprediction 
    Figure 11.1 and 11.2 presents the branch misprediction 
results. The average misprediction in big data is 9.3%, while 
that of SPEC, PARSEC and Scale-Out is 5.8%, 8.01% and 
8.66% On Atom processor, respectively. In addition, on Xeon, 

    
Figure 9: L1 Instruction MPKI (9.1) Big Data workloads (9.2): Different configurations of Hadoop micro-benchmarks 

    
Figure 10: LLC Data MPKI (10.1) Big Data workloads (10.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 11: Branch Misprediction (11.1) BigData workloads (11.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 12: ITLB MPKI (12.1) Big Data workloads (12.2) Different configurations of Hadoop micro-benchmarks 

    
Figure 13: DTLB MPKI (13.1) Big Data workloads (13.2) Different configurations of Hadoop micro-benchmarks 
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average misprediction of big data is 5.9%, while that of SPEC, 
PARSEC and Scale-Out is 2.7%, 2% and 2.3% respectively. 
This shows that branch misprediction rate in big data is at least 
1.2 times    higher on Atom and 2.13 times higher on Xeon 
compared with traditional benchmarks. In comparison, Atom 
experiences 1.5 times higher branch misprediction than Xeon 
processor. Figure 11.2 results show that the branch 
misprediction rate does not change noticeably with changing 
the data size.  
Observation. Traditional CPU and parallel benchmarks 
mainly having instruction working sets with tight loops (as in 
matrix algebra), making them easy for the branch predictor to 
predict correctly and reduce the misprediction rate. In big data 
workloads, however, loops are seldom, and instead they fetch 
record (LD), Match Key (CMP), and non-loop branches 
(Branch to handler or BC) operations. This results in higher 
branch misprediction rate and affects the application 
performance by creating stalls in the pipeline.  
5.5.4 TLB misses 

TLB (Translation look-aside buffer) misses are costly, in 
terms of both performance as well as power, taking up 
hundreds of cycles to respond. We have reported the 
Instruction TLB (ITLB) and Data TLB (DTLB) MPKI in 
Figure 12 and Figure 13. Our results reveal that on Xeon big 
data has the highest ITLB MPKI with the average of 0.23 
while that of SPEC, PARSEC and Scale-Out is orders of 
magnitude lower with an average of 7.44E-07, 0.0019, and 
0.081 respectively. The average DTLB MPKI of big data is 
just slightly higher than traditional benchmarks on Xeon, 
however on Atom SPEC has noticeably higher DTLB MPKI 
reading than others. On Xeon big data has the highest ITLB 
and DTLB MPKI compared with the traditional benchmarks. 
In contrast to this behavior SPEC is experiencing the highest 
ITLB and DTLB MPKI on Atom. Moreover, Atom incurs 
large ITLB MPKI as compared to Xeon, but lower DTLB 
MPKI in comparison to Xeon. Figure 12.2 and Figure 13.2 are 
showing the data sensitivity analysis of micro-benchmarks with 
respect to ITLB MPKI and DTLB MPKI. Increasing data size 
clearly increases the DTLB MPKI across both Atom and Xeon 
in most benchmarks, however, it does not have a noticeable 
impact on ITLB MPKI. 
Observation. Overall, on Xeon, big data applications have an 
order of magnitude lower ITLB miss rate compared to Atom, 
however on Xeon they have an order of magnitude higher 
ITLB miss rate compared to the traditional CPU benchmark. 
While the results show TLB miss overhead management is 
important in both Atom and Xeon for big data applications, the 
large gap between big data applications and traditional CPU 
benchmark on Xeon is calling for a big-data specific TLB 
management technique. Also the results show that the size of 
data affects DTLB miss rates in both architectures. 

6. RELATED WORK 
Recently, there have been a number of efforts to benchmark 

and characterize big data and cloud-scale applications, mainly 
on state-of-the-art high performance server platform. In 
general, there are two major approaches for benchmarking big 
data: A system benchmarking and a component benchmarking. 
A system benchmark is an end-to-end benchmarking which 

includes the entire database and application software stack, 
including data preparation, data aggregation and data analytics. 
A component benchmark encloses only a portion of the entire 
end-to-end system [29].  

The most prominent big data benchmarks, include 
HiBench, Scale-Out, BigDataBench, CloudCmp, and 
LinkBench. HiBench [30] is a benchmark suite for Hadoop 
MapReduce. CloudCmp [31] use a systematic approach to 
benchmark various components of the cloud to compare cloud 
providers. LinkBench is a real-world database benchmark for 
social network applications [32]. The Transaction Procession 
Performance Council (TPC) has released a number of 
benchmark suites in recent years, including TPC-C, TPC-E, 
and TPC-DS for online transaction processing. BigDataBench 
[2] was released very recently and includes online service and 
offline analytics for web service applications. BigBench [4] is 
a new big data benchmark that adopts TPC-DS as its basis and 
expands it for offline analytics on Xeon high performance 
server. The CloudSuite [3, 4] benchmark was developed for 
Scale-Out cloud workloads and mainly includes small data 
sets, e.g., 4.5 GB for Naïve Bayes.  

Several prior researches have characterized traditional CPU 
and parallel applications such as SPEC2006, PARSEC, and 
NAS on high performance server-class processors [39]. It is 
important to also compare the characteristics of big data 
application with these traditional benchmark suites. We have 
included the SPEC CINT2006, SPEC CFP2006 and PARSEC 
2.1 benchmarks for the comparison with BigData Workloads. 

This work is different from all above benchmarking and 
characterization work as it perform a comprehensive system-
level (power, performance, EDXP, DPS and DPJ) and 
microarchitecture-level(cache miss, TLB miss, branch 
misprediction) analysis of various big data applications and 
big data micro-benchmarks on two substantially different 
platforms one with high performance big core and another 
with low power little core to understand which of these two 
architectures is the choice for efficient big data processing. 

There have been also a number of research into 
application-specific [34, 40] and domain-specific accelerators 
[35, 36, 37]. Using tightly integrated FPGA [33] with CPU, 
and GPU with CPU [27], to accelerate big data processing 
have been proposed in recent work. While deploying 
programmable accelerator is a new and hot research topic, 
there has been little attention paid to how CPU designs should 
be adapted to this change. To the best of our knowledge, the 
only work on this topic is by Arora [29], which studied the 
role of the CPU for a CPU+GPU architecture. They concluded 
that, in a CPU+GPU architecture, the CPU is running a code 
that is significantly different from a CPU-only code. They 
found that the post-GPU code has a lower ILP, higher branch 
miss prediction rate, and larger number of load and stores, and 
benefits less from multiple cores, as there is less TLP after 
GPU offloading. In this paper, we demonstrated how 
deploying accelerator such as FPGA for big data affects the 
choice of big vs. little core for efficient processing. 

7. CONCLUSIONS 
In this paper, we present a comprehensive system and 

micro architecture-level analysis of big data applications on 
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two distinct server platforms; the conventional approach, a 
high performance big Xeon core; and the new trajectory in 
server design, a low power little Atom core, which advocates 
the use of a low-power core to address the power challenge.  

The characterization results show significantly larger 
performance drop (37%, on average) for big data applications 
compared to traditional CPU applications when running on big 
core server compared to little core server. Big core-based 
server provides a high performance, compared to little core, 
however, it is not as power efficient. Little core-based server is 
more efficient in terms of EDP for big data processing with 
small data sizes. However, as the size of data increases and 
with performance constraints, big core becomes an efficient 
choice. The analysis of data processing capability and 
efficiency of big data applications illustrates that the choice of 
big core vs. little core-based server in terms of data processing 
per second and data processing per joule is closely decided by 
the application type, size of data, and computational and I/O 
intensity of the application. 

In addition, we performed the post-acceleration CPU code 
analysis to find out the most efficient server architecture to 
process the remaining code of big data applications. The results 
show that there is a difference between the choice of big vs. 
little core-based server before and after accelerations. While 
most benchmarks clearly favor little core post acceleration, 
several applications show higher speed up on big core over 
little core post acceleration compared to pre-acceleration. 

To provide insight on whether current server design based 
on big and little core architectures requires improvement in 
their microarchitecture parameters for efficient big data 
processing, we perform a comprehensive microarchitecture 
characterization and compare the results with traditional Spec, 
PARSEC, and scaleout applications. Our analysis indicates 
that the size of data has a non-trivial impact on several micro-
architecture parameters. Moreover, results show that while a 
small 4x1MB two-level data cache is sufficient for big data 
applications on little core the instruction cache hierarchy 
pipeline needs improvement. Also little core needs 
architectural improvement in instruction TLB miss overhead 
management as well as branch predictor. Furthermore, the 
analysis shows that the deep software stack of big data 
applications, along with the excessive non-loop branches, 
affects L1 cache hit rate and branch predictor accuracy in both 
big and little cores. Moreover, big data applications require 
efficient instruction prefetchers to predict complex patterns 
and sophistication branch predictor to handle the unknown 
control flow.  
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