
A+ Tuning: Architecture+Application Auto-tuning
for In-Memory Data-Processing Frameworks

Han Wang1, Setareh Rafatirad2, and Houman Homayoun1

1University of California, Davis, CA, USA
2 George Mason University, Fairfax, VA, USA

1{hjlwang,hhomayoun}@ucdavis.edu, 2{srafatir}@gmu.edu

Abstract—Processing big data eventually leads to an upsurge
in datacenters’ power consumption, which is one of the pivotal
concerns to be addressed. Many of the existing works focus
on optimizing either power or performance, which is not the
best parameter to consider for achieving high energy efficiency
with low operational costs. Furthermore, the existing works
require profiling of big data applications exhaustively and only
consider tuning of either architectural or software parameters,
often leading to sub-optimal settings. To cope up with the
above-mentioned drawbacks of the existing works, we propose
a system, A+ Tuning (Architecture + Application Auto-tuning)
which enables to determine a close to optimal settings by simulta-
neously optimizing for Energy Delay product(EDP), representing
energy efficiency. The proposed A+ Tuning involves a) profile
the incoming unknown applications to different types (compute-
bound, memory-bound and etc.) based on known applications
classification result; b) co-locate the applications; and c) employs
a machine learning based model to determine the optimal
settings and tune from both architectural and application settings
for the co-located applications. By applying the proposed A+
Tuning system, datacenters achieve up to 4× EDP improvement
compared to fairshare methodology, and 2.5× compared with
recent works such as BestConfig.
Keywords: Auto-tuning, Machine Learning, Energy-
efficiency.

I. INTRODUCTION

In the last two decades, the computing paradigms have

experienced a tremendous change with vast amounts of data

being amassed by various business units, and public orga-

nizations. Datacenters have emerged as a major facility to

store and process such massive data and provide insights.

To better utilize the datacenter’s resources, several large-

scale processing frameworks such as Hadoop [5], Spark [6],

Tez [7], and Google Dataflow [8], have emerged. Among

the aforementioned frameworks, Spark [6] is a prominent

in-memory processing framework that has attracted attention

from both academia and industry such as Facebook, Alibaba,

and HortonWorks.

With the improvement in networking, storage, processing,

and infrastructure management, scaling up datacenters is a

preferable approach to cope with the big data challenge.

However, adding more nodes to datacenters exacerbates power

management and load-balancing issues. What’s more, the

increase of energy consumption and cooling costs give data-

centers increasing pressure to achieve energy-efficiency. Since

the hardware infrastructure cannot be scaled proportionately

with the size of data, and the number of applications sub-

mitted to datacenters keeps growing, more applications need

to be co-located at the node level. Therefore, the question

of how to co-locate and configure data-intensive applications

automatically for energy efficiency is becoming important. The

existing works such as [1], [4] deploy tuning of software level

parameters for higher performance, but are limited to tuning

single application and cannot handle architectural parameter

tuning. Furthermore, those methods involve time-consuming

workload profiling leading to limited scalability.

To the best of our knowledge, no previous works compre-

hensively perform co-location and fine-tuning for unknown

applications concerning the above challenges. In order to

address aforementioned challenges, this work presents A+

Tuning system which can automatically co-locate and tune

applications to improve energy efficiency. As shown in Table

I, recent works in auto-tuning and co-locating big data ap-

plications are compared, showing the contribution and nov-

elty of our work. Detailed contributions are listed below:

(1) comprehensive parameters (both hardware architectural

and application-level parameters are considered); (2) ability
to tune unknown applications (profile applications firstly

and classify them into different types); (3) Machine-learning
(ML) based self-tuning (auto-tuning is achieved with the

usage of ML techniques).
II. EXPERIMENTAL SETUP

A. Framework

In this work, we use in-memory frameworks which are

widely used for processing big data analysis, like Spark [6],

Flink [9] and Tez [7]. Compared to Hadoop, Spark and Flink

load data into memory and avoid frequent disk I/O to fasten

data processing speed. Since Spark is more widely used, we

conduct our experiment on these frameworks and show the

detail of the proposed A+ Tuning system on Spark for a brief

reason.

B. Workloads

For evaluating the proposed A+ Tuning approach, we use

the SparkBench [10] which includes a comprehensive set of

applications such as machine learning, graph mining, data min-

ing, data analysis, and pattern searching applications, which

are frequently used in real-world applications. For each of the

applications, three input data sizes are used: 1GB, 5GB and

10GB per node.

163

2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS)

978-1-7281-2583-1/19/$31.00 ©2019 IEEE
DOI 10.1109/ICPADS47876.2019.00032

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

Recent Work Auto-tuning Optimization Target Profiling Method Standalone Tuning Co-located and Co-tuning App Parameters Arch Parameters

BestConfig [1] � Performance Multiple Times � �

LEO [2] � Energy-efficiency Multiple Times � �

Quasar [3] � Performance Partial � �

DAC [4] � Performance Multiple Times � �

A+ Tuning � Energy-efficiency One Time � � � �

TABLE I: Relevant Works Comparison

Fig. 1: The workflow of proposed A+ Tuning

Fig. 2: Core distribution among different co-located applica-

tions A+ Tuning
C. Hardware Platform and Software Settings

All experiments are conducted on a eight-node cluster which

consists of eight Intel Xeon E5-2650 servers. Each Xeon server

has eight processor cores and 8GB DRAM, three-level cache

system. All of the experiments in this work are performed

with a 10Gbit Ethernet network bandwidth, which is signifi-

cantly higher than applications bandwidth requirements, thus

the network does not become a bottleneck for the studied

experiments. The operating system is Ubuntu 16.0.4 LST with

Linux kernel 4.13, Hadoop version 2.7.4 and Spark version

is 1.6.0. Details of the experiment environment are given in

Table II. Table III lists tunable architectural and software level

parameters for big data frameworks.

Processor Intel Xeon E5-2650, single socket-8 cores
Frequency 1.2-2.6GHz
Storage 480GB KINGSTON SHFS37A
Memory Capacity 32GB DDR3
Operating System Ubuntu 16.0.4 LST
Hadoop version 2.7.4
Spark version 1.6.0

TABLE II: Architectural node configurations
D. Measurement tools

We use Perf [11] to measure the hardware (memory and pro-

cessor) behavior. Perf is a profiling tool that can help to track

the hardware performance counters. The performance counters

data are collected for the entire run of each application.

We collect OS-level performance information with DSTAT

Tuning Parameters Range Default Value Category
Frequency 1.2-2.6GHz 2.6GHz Architecture
CPU cores 1-8 #core Application
Memory Size 1-8GB 1GB Architecture
Number of Partitions 1-512 1 Application
HDFS Block Size 32-1024MB 128MB Application

TABLE III: Application- and architecture-level tuning param-

eters

[12] tool. We use Wattsup PRO power meter to measure

and record power consumption at one-second granularity. The

power reading is for the entire system, including core, cache,

main memory, hard disks, and on-chip communication buses.

We collect the average power consumption for the studied

applications and subtracted the system idle power to estimate

the power consumption of the active state of cores.
III. SYSTEM DESIGN

In this section, we propose our methodology for energy

efficiency by co-locating and auto-tuning big data applications,

called A+ Tuning. The A+ Tuning has the following three

modules: the application predicting module, the pairing mod-

ule, and the self-tuning module. The application predicting

module of A+ Tuning profiles an incoming application and

collect run-time characteristics and classify the application

to one of the application types. Then, the pairing module

determines the applications that can be co-located. Lastly,

the self-tuning module that comprises of an ML-based EDP

model will give the optimal EDP settings to run the application

without exhaustively searching the optimal one. More details

are presented below.

DataSize App A AppName B p1 . . . pn EDP
1GB I I 1200MHz . . . 64MB EDP1

1GB I C 1800MHz . . . 128MB EDP2

1GB H M 2600MHz . . . 256MB EDP3

. .

TABLE IV: Database structure
A. Application Mapping

Firstly, known applications in datacenters are profiled and

the architectural and system-level behaviors will be collected.

164

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

Then hierarchical clustering technique is employed to classify

the known applications as compute-bound (C), memory-bound

(M), I/O-bound (I) and hybrid referred to the combination of

compute-bound and I/O bound (H). Secondly, the incoming

unknown application are profiled and corresponding archi-

tectural and system-level behaviors are collected. Then the

unknown application is classified by the clustering model built

based on known applications as one of the types (C/M/I/H)

based on known applications.

IPCs Memory Footprint Cycles
I/O read/write LLC MPKI CPU usage

TABLE V: Features used to classify applications into C, H,

M, I bound

Algorithm 1: Pairing System Pseudocode

Input: queue
Result: List of Apps to Co-locate

1 app ← Pop();

2 co-flag ←getFlag(app);

3 applist ← app;

4 tempstack ← NULL;

5 queuesize ←getSize(queue);

6 if queuesize == 0 then
7 return applist;

8 if co-flag ! = 0 then
9 return applist;

10 tempapp ←Pop(queue);

11 if getFlag(tempapp)==1 then
12 applist ←applist +tempapp;

13 else
14 Push(tempstack,tempapp);

15 while getSize(tempstack) ≥0 do
16 tempstack ←Pop(tempstack);

17 Push(queue,tempstack);

18 return applist;

B. Pairing Applications

Once each incoming unknown application has been profiled,

the application will be paired for co-location. Since some

applications may require to be executed solely by users, a

co-location flag (co-flag) is used to indicate whether the

application should be co-located or not. The co-flag can be

either 0 or 1. When co-flag equals 0, incoming applications

should not be co-located; when co-flag equals 1 which is the

default value, incoming applications should be co-located.

In this work, incoming applications are kept in a FIFO

queue that contains information about submitted job such as

application name, data size and co-location flag. Algorithm 1

shows the pairing procedure. In this study, we consider the

length of the queue described in line 6 to line 7, and then

consider whether the application should be co-located or not

(1 or 0), as shown in line 8 to line 9. For example, if the

length of the queue is only 0, we decide to run the application

individually. Else we use Pop() function to get one application.

If the co-location flag equals 1, we add the application to

applist, as in line 12; else we add it to tempstack. After

getting enough applications to co-locate, we pop applications

in tempstack and store them back to the queue again in line

16 and line 17 and return applications applist to co-locate.

The last step returns the application pair (applist) and the

other application with different co-location flag or co-location

tag will be turned back to the queue. This procedure guarantees

that applications never starve.

C. Self-Tuning

After pairing applications, we get a pair like I-C, I-H, etc.

Then we need to tune the paired applications according to pair-

ing type. As shown in Figure 2, different pairs prefer various

settings which cause very different EDP value. We propose a

machine learning based approach (MLA) to predict the optimal

EDP setting, which only requires to run a part of parameter

settings and their results are employed as training dataset. For

collecting the training dataset, each paired applications are

executed under a part of settings and their EDP are collected

as shown in Table IV. Then a Multilayer Perceptron (MLP),

which is an artificial neural network model for creating a ML-

based EDP model, is trained based on the training dataset. This

approach significantly reduces the time required for finding

the optimal setting, and also eliminates the need for executing

applications under all possible settings. The inputs of MLP

are the application’s information which application type, like

memory-bound, I/O-bound and so on. The output of MLP is

an estimated EDP for the paired applications and the setting

giving the optimal EDP by MLP model is the one A+ Tuning

suggests.

IV. EVALUATION

In order to evaluate A+ Tuning system, we run unknown

applications and then we use A+ Tuning to find the optimal

configuration. We set co-location flag of incoming applications

to 1, which represent applications should be co-located. We

employ leave-one-out cross-validation (LOOCV) [13] tech-

nique for validating the mapping module. This means that we

choose seven applications for training and test the model with

the left one. Four applications are chosen as testing candidates.

The four applications are: I (LinearR), H (PCA), M (SVM), C

(KMeans). In order to comprehensively evaluate the impact of

data size on energy-efficiency tuning, we choose two different

input data sizes (8GB and 80GB meaning 1GB and 10 GB

per node). We use the following five baseline approaches for

comparison with A+ Tuning:

• Co-located with randomly parameter setting

[CL Random]: in this baseline, we run co-located

applications with one parameter setting chosen randomly

from settings.

• Co-located with default setting [CL Default]: running co-

located applications with default settings.

• Co-located with fair-share [CL Fairshare]: running co-

located applications with fair-share of CPU processors

and memory, i.e., four processors and 4GB memory for

each application without frequency tuning.

165

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: A+ Tuningwith 1GB per node input data size

Fig. 4: A+ Tuningwith 10GB per node input data size

• Running applications with LEO presented in [2] [LEO]:

running applications individually and adjusting resource

setting according to continuously monitoring.

• Running applications with Bestconfig proposed in [1]

[Bestconfig]: running applications individually with the

optimal performance setting given by the proposed algo-

rithm in former work [1].

• CL A+: running co-located applications with parameter

setting recommended by the proposed A+ tuning frame-

work.In Figure 3 and Figure 4, Y-axis represents the value of EDP X

(X represents CL Random, CL Default or CL Fairshare, LEO

and Bestconfig) normalized over EDP A+, which is the EDP

value of A+ tuning. The larger the ratio, the A+ Tuning

performs better. The Figure shows that CL Random and

CL Default have a much higher value than A+ tuning for both

8GB and 80GB input data size (1GB and 10 GB per node),

meaning that A+ tuning performs better than randomly tuning

or using default settings. When the input size is small (1GB

per node), we observe that the EDP gap between CL Fairshare

and A+ tuning is around 20% on average. This is because

applications with small data size have lower sensitivity to

CPU and memory resources. However, when we increase the

input data size to 80GB (10G per node), it can be observed

that the EDP of CL Fairshare is at most 4× than EDP of

A+ Tuning. Comparing with Bestconfig [1] and LEO [2], A+

Tuning achieves up to 2.5 × and 2 × EDP respectively. The

reason is that Bestconfig and LEO run applications individu-

ally and consider either application level or architectural level

parameters only.

V. CONCLUSION

This work presents the A+ Tuning to co-locate and fine-

tune big data applications. By using the proposed A+ Tuning,

datacenters only need to profile incoming unknown applica-

tions for once and achieve a close to optimal EDP, showcasing

scalability for big data applications. Further to cope up with

the large design space, the proposed A+ Tuning employs

a ML-based technique to tune the co-located applications

towards an optimal EDP. The results show that A+ Tuning

is able to achieve up to 4× EDP improvement compared

to fairshare for co-location, up to 2× EDP improvement

compared to other race-to-idle method. Compared to recent

tuning techniques, A+ Tuning shows up to 2.5× better energy

efficiency.
REFERENCES

[1] Y. Zhu et al., “Bestconfig: tapping the performance potential of systems
via automatic configuration tuning,” in Proceedings of the 2017 SoCC.

[2] N. Mishra et al., “A probabilistic graphical model-based approach for
minimizing energy under performance constraints,” in ACM SIGARCH
Computer Architecture News, vol. 43, pp. 267–281, ACM, 2015.

[3] C. Delimitrou et al., “Quasar: resource-efficient and qos-aware cluster
management,” ACM SIGPLAN Notices.

[4] Z. Yu et al., “Datasize-aware high dimensional configurations auto-
tuning of in-memory cluster computing,” in he Twenty-Third ASPLOS.

[5] T. White. O’Reilly Media Inc, 2012.
[6] M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstrac-

tion for in-memory cluster computing,” in 9th USENIX NSDI, 2012.
[7] B. Saha et al., “Apache tez: A unifying framework for modeling and

building data processing applications,” in ACM SIGMOD International
Conference on Management of Data.

[8] T. Akidau et al., “The dataflow model: A practical approach to balancing
correctness, latency, and cost in massive-scale, unbounded, out-of-order
data processing,” Proc. VLDB Endow.

[9] P. Carbone et al., “Apache flink: Stream and batch processing in a single
engine,” Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering, vol. 36, no. 4, 2015.

[10] “Sparkbench,” in https://github.com/CODAIT/spark-bench.
[11] “Perf,” in https://perf.wiki.kernel.org/index.php/Main Page.
[12] “Dstat,” in http://lintut.com/dstat-linux-monitoring-tools/.
[13] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,” in Encyclope-

dia of database systems, pp. 532–538, Springer, 2009.

166

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:29:30 UTC from IEEE Xplore. Restrictions apply.

