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Abstract— Malware detection and classification has enticed a 
lot of researchers in the past decades. Several mechanisms based 
on machine learning (ML), computer vision and deep learning 
have been deployed to this task and have achieved considerable 
results. However, advanced malware (stealthy malware) generated 
using various obfuscation techniques like code relocation, code 
transposition, polymorphism and mutation thwart the detection. 
In this paper, we propose a two-pronged technique which can 
efficiently detect both traditional and stealthy malware. Firstly, 
we extract the microarchitectural traces procured while executing 
the application, which are fed to the traditional ML classifiers 
to identify malware spawned as separate thread. In parallel, for 
an efficient stealthy malware detection, we instigate an automated 
localized feature extraction technique that will be used as an input 
to recurrent neural networks (RNNs) for classification. We have 
tested the proposed mechanism rigorously on stealthy malware 
created using code relocation obfuscation technique. With the 
proposed two-pronged approach, an accuracy o f 94%, precision 
o f 93%, recall score o f 96% and F-l score o f 94% is achieved. 
Furthermore, the proposed technique attains up to 11% higher on 
average detection accuracy and precision, along with 24% higher 
on average recall and F-1 score as compared to the CNN-based 
sequence classification and hidden Markov model (HMM) based 
approaches in detecting stealthy malware.

Index Terms—machine learning, malware detection, stealthy 
malware, localized features

I. In t r o d u c t io n

The immense utilization of embedded hardware computing 
technology in computer systems, has made the system secu­
rity an indispensable issue. Among multiple security threats, 
malware is a vital threat due to comparatively less intricacy 
to design, craft and disseminate into the device(s) [1]. Mali­
cious software, ordinarily known as ‘malware’ is a software 
program or an application developed by an attacker to gain 
inadvertent access to the computing device(s) in order to 
perform unauthorized accesses as well as malicious activities 
such as stealing data, accessing sensitive information like 
credentials, and manipulating the stored information without 
user’s permission.

Traditional and primitive software-based malware detec­
tion techniques such as signature-based and semantics-based 
anomaly detection techniques [2], [3] exist for more than 
two decades, though effective, they incur remarkable com­
putational and processing overheads yet remain inefficient to 
detect hidden threats [4]. To overcome this impediment of the 
software-based malware detection techniques, the work in [5] 
proposed using the microarchitectural event traces captured 
through on-chip hardware performance counter (HPC) regis­
ters. Despite the better performance compared to the software-

based techniques, HPC-based method fails to effectively detect 
stealthy malware1 [6].

As the stealthy malware disintegrates itself into the benign 
code and reassembles dynamically at runtime to launch the 
malicious behavior, just leveraging globalized features for 
detecting stealthy malware is not sufficient [7], [8]. This impels 
us to assimilate and extract the localized features for an 
efficient detection of stealthy malware.

To overcome the shortcomings of existing works and ad­
dress the aforementioned challenges, in this work we introduce 
a novel hybrid technique that uses machine learning for 
detecting traditional malware and stealthy malware, despite the 
advanced crafting techniques, with high efficiency. The major 
contributions of this work to achieve such high performance 
malware detection can be outlined in three-fold manner as 
follows:

# Our proposed traditional and stealthy malware detection 
technique uses a HPC-based method as well as localized 
feature-based technique. In the HPC-based solution, the 
HPC traces of a given application are collected during 
runtime and is validated through a traditional ML classi­
fier for malware detection and classification.

# In the localized feature-based method, the application 
binaries are translated into image binaries from which 
local features are extracted and processed through long 
short-term memory (LSTM) recurrent neural network 
(RNN) for malware detection and classification.

# Depending on the confidence of the classification for 
a given application, the class proposed by the two ap­
proaches is considered as the final output.

We have evaluated the proposed two-prong method with 
novel localized feature extraction technique on over 6000 
traditional malware samples (backdoor, rootkit, trojan, virus 
and worm), 2500 stealthy malware samples and 1500 benign 
samples. The accuracy which we attained on traditional mal­
ware samples was 94% and accuracy for stealthy malware was 
nearly 90% with a Fl-score of 92% and recall score of 91%.

II. Mo t iv a t io n

Here, we discuss the key findings which motivated and im­
pelled us to propose the hybrid two-pronged malware detection 
technique. Figure 1a, Figure 1b and Figure 1c visualizes the

1Stealthy malware is a malware which is embedded inside a benign 
application through sophisticated malware obfuscation techniques, thereby 
making it complex to detect with traditional approaches as well as HPC-based 
approach and image processing approaches.
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(a) (b) (c)

Fig. 1: Heatmap for (a) benign applications; (b) stealthy malware; and (c) malware applications

features for benign, stealthy malware and traditional malware 
applications respectively in the form of heatmaps.

The y-axis (image pattern) represents the patterns in an 
application’s executable and the x-axis (patterns) represents 
the observed patterns across the whole dataset corpus. The 
intensity of each pixel in the heatmap is the cosine similarity 
percentage between the individual pattern in the file for which 
the heatmap is generated. High intensity indicates ample 
presence of a given pattern in the particular application, which 
shows a close match between the various overall patterns.

We draw the following observations from the plotted 
heatmaps: (1) In Figure 1a, which is a heatmap for benign 
application, one can observe high intensity (dark) regions from 
pattern number 183 to 671. However, the same region appear 
with less intensity in case of malware, as in Figure 1c. More­
over, across the malware heatmaps (Figure 1b and Figure 1c), 
no such intense regions can be observed. (2) In the heatmap for 
stealthy malware (Figure 1b), one can observe that for a given 
overall patterns, the heatmap across stealthy image patterns 
are not uniform i.e. one can observe equidistant horizontal 
light intensity regions and similar faded horizontal regions, 
indicating uneven pattern occurrence in stealthy malware; and 
(3) the intensity of patterns are spread across the patterns for 
stealthy malware heatmap, whereas localized in the case of 
traditional malware, as observed in Figure 1c and Figure 1b. 
Altogether, it makes stealthy malware harder to detect. Based 
on the above observation, we propose extracting and utilizing 
localized features to distinguish stealthy malware, traditional 
malware and benign applications.

III. Pr o p o s e d  Ma l w a r e  De t e c t io n  Me t h o d o l o g y

A. Overview of the Proposed Methodology
First, we present the overview of our proposed two-prong 

methodology depicted in Figure 2 for an efficient malware 
detection, followed by in-depth details. The incoming applica­
tion (traditional malware or benign or stealthy malware) is fed 
to both, HPC-based method and localized feature extraction 
based computer vision approach simultaneously as shown in 
Figure 2. In the HPC-based approach, the prominent HPCs 
information is collected during runtime, which is then fed to 
ML classifier for malware detection. The prominent HPCs that 
are needed, are determined offline by obtaining all feasible

HPC values and feeding to principal component analysis 
(PCA) for feature reduction. While, the HPC-based technique 
performs the dynamic analysis on incoming file, the local­
ized feature based approach is a static approach that utilizes 
computer vision-based processing for malware detection. In 
this method, the incoming binary file is converted to a gray­
scale image. The patterns are extracted from this gray-scale 
image and are further labelled to compare with the stored 
patterns of stealthy and traditional malware by employing a 
RNN-LSTM. Depending on the classification confidence from 
both the techniques, the class predicted by the technique with 
higher confidence is considered as the output class for input 
application. We describe the details of individual approaches 
below.

B. HPC-based Detection
In the HPC-based detection technique, we require the 

microarchitectural event traces captured through HPCs for 
malware detection. One of the challenges is that there is 
only a limited number of available on-chip HPCs that one 
can extract at a given time-instance. However, executing an 
application generates few tens of microarchitectural events. 
Thus, to perform real-time malware detection, one needs to 
determine the non-trivial microarchitectural events that could 
be captured through the limited number of HPCs and yield 
high detection performance. To achieve this, we use principal 
component analysis (PCA) for feature/event reduction on all 
the microarchitectural event traces captured offline by itera­
tively executing the application. Based on the PCA, we decide 
the most eminent events and monitor them during runtime. The 
ranking of the events is determined as follows:

= covjAppi , Z j ) (1)
var(Appi ) x var(Z j )

where pi is pearson correlation coefficient of any i th appli­
cation. Appi is any i th  incoming application. Z i is an output 
data contains different classes (backdoor, rootkit, trojan, virus 
and worm in our case). cov(Appi ,Z i ) measures covariance 
between input and output. var(Appi ) and var(Z i ) measure 
variance of both input and output data respectively. Based on 
the ranking, we can select most eminent HPCs and monitor 
them during runtime for efficient malware detection. These
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Fig. 2: Proposed hybrid approach for detecting stealthy malware

reduced features collected at runtime are provided as input 
to ML classifiers which determine the malware class label 
(Y  ^  backdoor, rootkit, trojan, virus and worm) with higher 
confidence (a). This HPC-based malware detection technique 
is fast, robust and accurate in detecting and classifying the 
traditional malware but it has overhead in terms of area, 
power and latency. Despite the benefits achieved, this approach 
does not yield higher performance on stealthy malware due to 
contamination of HPC when malware is embedded into the 
benign application. To address this critical issue, a computer 
vision-based approach is adopted in parallel.

C. Detection based on Localized Feature Extraction
In the computer vision-based detection technique, the appli­

cation binary is converted into a gray-scale image for localized 
feature extraction. The incoming binary file is read as a vector 
of 8 bit unsigned integers and then structured into a 2D array. 
This can be visualized as a gray-scale image in the range 
[0,255] (0: black, 255: white) [7]. The width of the image is 
fixed to 256 and the height is allowed to vary depending on 
the file size. Since, all the files vary in size from 60 kB - 100 
kB, the recommended width is 256 [7]. A raster scanning is 
performed on the converted binary images as shown in Figure 
2, to find the image patterns. Each pattern is of 32x32 block 
size. We utilize a cosine similarity to distinguish between 
multiple patterns i.e., if the cosine similarity of two patterns is 
higher than a threshold (0.75 in this work based on conducted 
experiments), they are considered to be same. When more 
than one matched patterns are found in the database, then the 
one with the highest cosine similarity is considered. Once the 
image patterns are recognized for a given binary file, the whole 
image binary is converted into a sequence of patterns (Each 
pattern is provided with a label). This sequence of labels is fed 
to a long short-term memory (LSTM) recurrent neural network 
(RNN). RNN can be fed with the sequences of same length. 
We perform the padding of zeros to sequence in order to make 
its length uniform.

Learning of RNN for the patterns happens as follows. Let 
ut and ht denote the input and state vectors, respectively, at

time instance t. Let Win, Wrec, b, Wout, bout be the input 
to hidden layer weight matrix, recurrent weight matrix, bias, 
output weight matrix and output bias respectively. Let u  and e 
be the activation function of the hidden layer and output layer 
respectively. In our proposed work, tanh is used for hidden 
layer and softmax is used for the output. The recurrent models 
are then described by the following equations:

ht u  x (W*in x u t + ^rec x ht - l  + b) (2)

X t = e x (Wout x ht +  bout) (3)

This RNN-model is finally used to classify the incoming 
stealthy malware binary based on equation (2) and equation (3) 
and predicts the corresponding class label X t. The rationale 
to utilize RNN is to exploit the temporal as well as spatial 
dependencies that attackers utilize to craft stealthy malware.

For the given input application, we have 2 labels (same or 
different) predicted through HPC-based and computer vision- 
based approaches. In our work, we consider the confidence 
of the prediction from both the approaches and the label 
from predictor with confidence higher than threshold (a = 
75%, which is determined through trial-and-error method) is 
considered to be the associated class for the input application.

Sequence Classifiers

Fig. 3: Performance comparison of sequence classifiers
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Fig. 5: Receiver operating characteristic (ROC)-curve

IV. Ex p e r im e n t a l  Re s u l t s
A. Experimental Setup

The proposed methodology is implemented on an Intel 
core i7-8750H CPU with 16GB RAM. We have obtained 
malware applications from VirusTotal [9] . We utilized benign 
applications such as documents (.pdf, .txt, .docx) inside which 
the binaries of above mentioned malware classes are integrated 
through code obfuscation (code relocation [10]) process to cre­
ate 2500 stealthy malware samples. We have randomly placed 
the malware code into a benign file to increase stealthiness. 
This process was utilized to create 1600 stealthy malware. 
The HPC-based mechanism leverages a single layer neural 
network with 10 neurons in hidden layer. The RNN model 
has 1 dimensional dropout layer with threshold of 0.7, LSTM 
layer with 64 neurons and 0.7 recurrent dropout followed by a 
dense layer with softmax activation. It uses ADAM optimizer 
and loss is calculated based on the categorical cross entropy.

B. Performance of Malware Detection
For the traditional malware i.e., malware spawned as sepa­

rate thread, an accuracy of nearly 90% is achieved with HPC- 
based malware detection. However, for stealthy malware, the 
HPC-based malware detection accuracy is shattered to 54% 
on an average (These individual results are not plotted for 
the purpose of brevity). However, with the proposed hybrid 
approach, an accuracy of 94% is achieved respectively despite 
of code obfuscation.

Performance comparison of the sequence classifiers can be 
illustrated from Figure 3. We observe that for a traditional 
malware application, RNN sequence classifier based on our 
localized feature extraction method, classifies traditional mal­
ware with the highest accuracy of 94% accuracy. The per­
formance of traditional sequence classification technique de­
teriorate against stealthy malware, while our localized feature 
extraction based method achieved an accuracy of nearly 90% 
against stealthy malware. The most important observation is 
that the accuracy was definite while detecting stealthy malware

which was embedded in benign application using various 
obfuscation techniques such as randomized code obfuscation, 
code relocation and polymorphism [10].

In addition to accuracy, we evaluate and compare other 
performance metrics for malware detection, as shown in Figure 
4. Precision score of 0.93 is achieved with the proposed 
methodology with an average F-1 score and recall score of 
0.94 and 0.96 respectively. We conclude that the recall score 
and F-1 score attained with proposed methodology is approxi­
mately 24% higher and 23% higher respectively, compared to 
others.

From Figure 5, it is evident that with the proposed mal­
ware detection, the area under the curve is very close to 1, 
which indicates a higher robustness. Considering the evalua­
tion evidences, we can substantiate that our proposed hybrid 
malware detection technique outperforms other mechanisms in 
detecting traditional and stealthy malware.

V. CONCLUSION

We propose a hybrid approach of utilizing architectural 
(trace) as well as code properties, consisting of HPCs and 
extracted localized features, which are used for stealthy mal­
ware detection. In the HPC-based approach, we determine the 
most prominent HPCs for malware detection and feed them to 
ML classifier for malware detection. In parallel, we provide 
the incoming application to the devised image processing 
technique to convert application binary to a gray-scale image 
and extract patterns over spatial distribution. For sequence 
classification, we utilize a RNN to extract and process the 
localized features to attain the highest average accuracy of 
90% over stealthy malware and 94% over traditional malware 
application. Thus, we conclude that our proposed methodology 
is robust in detecting stealthy malware and traditional malware.
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