
2019 18th IEEE International Conference on Machine Learning and Applications (ICMLA)

RNN-based Classifier to Detect Stealthy Malware using
Localized Features and Complex Symbolic Sequence

Sanket Shukla*, Gaurav Kolhe^, Sai Manoj P Dt, Setareh Rafatirad*
* Department of Information Sciences and Technology
t Department of Electrical and Computer Engineering

George Mason University, Fairfax VA, USA 22030
Email: {sshukla4, gkolhe, spudukot, srafatir}@gmu.edu

Abstract— Malware detection and classification has enticed a
lot of researchers in the past decades. Several mechanisms based
on machine learning (ML), computer vision and deep learning
have been deployed to this task and have achieved considerable
results. However, advanced malware (stealthy malware) generated
using various obfuscation techniques like code relocation, code
transposition, polymorphism and mutation thwart the detection.
In this paper, we propose a two-pronged technique which can
efficiently detect both traditional and stealthy malware. Firstly,
we extract the microarchitectural traces procured while executing
the application, which are fed to the traditional ML classifiers
to identify malware spawned as separate thread. In parallel, for
an efficient stealthy malware detection, we instigate an automated
localized feature extraction technique that will be used as an input
to recurrent neural networks (RNNs) for classification. We have
tested the proposed mechanism rigorously on stealthy malware
created using code relocation obfuscation technique. With the
proposed two-pronged approach, an accuracy o f 94%, precision
o f 93%, recall score o f 96% and F-l score o f 94% is achieved.
Furthermore, the proposed technique attains up to 11% higher on
average detection accuracy and precision, along with 24% higher
on average recall and F-1 score as compared to the CNN-based
sequence classification and hidden Markov model (HMM) based
approaches in detecting stealthy malware.

Index Terms—machine learning, malware detection, stealthy
malware, localized features

I. In t r o d u c t io n

The immense utilization of embedded hardware computing
technology in computer systems, has made the system secu­
rity an indispensable issue. Among multiple security threats,
malware is a vital threat due to comparatively less intricacy
to design, craft and disseminate into the device(s) [1]. Mali­
cious software, ordinarily known as ‘malware’ is a software
program or an application developed by an attacker to gain
inadvertent access to the computing device(s) in order to
perform unauthorized accesses as well as malicious activities
such as stealing data, accessing sensitive information like
credentials, and manipulating the stored information without
user’s permission.

Traditional and primitive software-based malware detec­
tion techniques such as signature-based and semantics-based
anomaly detection techniques [2], [3] exist for more than
two decades, though effective, they incur remarkable com­
putational and processing overheads yet remain inefficient to
detect hidden threats [4]. To overcome this impediment of the
software-based malware detection techniques, the work in [5]
proposed using the microarchitectural event traces captured
through on-chip hardware performance counter (HPC) regis­
ters. Despite the better performance compared to the software-

based techniques, HPC-based method fails to effectively detect
stealthy malware1 [6].

As the stealthy malware disintegrates itself into the benign
code and reassembles dynamically at runtime to launch the
malicious behavior, just leveraging globalized features for
detecting stealthy malware is not sufficient [7], [8]. This impels
us to assimilate and extract the localized features for an
efficient detection of stealthy malware.

To overcome the shortcomings of existing works and ad­
dress the aforementioned challenges, in this work we introduce
a novel hybrid technique that uses machine learning for
detecting traditional malware and stealthy malware, despite the
advanced crafting techniques, with high efficiency. The major
contributions of this work to achieve such high performance
malware detection can be outlined in three-fold manner as
follows:

Our proposed traditional and stealthy malware detection
technique uses a HPC-based method as well as localized
feature-based technique. In the HPC-based solution, the
HPC traces of a given application are collected during
runtime and is validated through a traditional ML classi­
fier for malware detection and classification.

In the localized feature-based method, the application
binaries are translated into image binaries from which
local features are extracted and processed through long
short-term memory (LSTM) recurrent neural network
(RNN) for malware detection and classification.

Depending on the confidence of the classification for
a given application, the class proposed by the two ap­
proaches is considered as the final output.

We have evaluated the proposed two-prong method with
novel localized feature extraction technique on over 6000
traditional malware samples (backdoor, rootkit, trojan, virus
and worm), 2500 stealthy malware samples and 1500 benign
samples. The accuracy which we attained on traditional mal­
ware samples was 94% and accuracy for stealthy malware was
nearly 90% with a Fl-score of 92% and recall score of 91%.

II. Mo t iv a t io n

Here, we discuss the key findings which motivated and im­
pelled us to propose the hybrid two-pronged malware detection
technique. Figure 1a, Figure 1b and Figure 1c visualizes the

1Stealthy malware is a malware which is embedded inside a benign
application through sophisticated malware obfuscation techniques, thereby
making it complex to detect with traditional approaches as well as HPC-based
approach and image processing approaches.

978-1-7281-4550-1/19/S31.00 ©2019 IEEE
DOI 10.1109/ICMLA.2019.00076

406

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:28:26 UTC from IEEE Xplore. Restrictions apply.

(a) (b) (c)

Fig. 1: Heatmap for (a) benign applications; (b) stealthy malware; and (c) malware applications

features for benign, stealthy malware and traditional malware
applications respectively in the form of heatmaps.

The y-axis (image pattern) represents the patterns in an
application’s executable and the x-axis (patterns) represents
the observed patterns across the whole dataset corpus. The
intensity of each pixel in the heatmap is the cosine similarity
percentage between the individual pattern in the file for which
the heatmap is generated. High intensity indicates ample
presence of a given pattern in the particular application, which
shows a close match between the various overall patterns.

We draw the following observations from the plotted
heatmaps: (1) In Figure 1a, which is a heatmap for benign
application, one can observe high intensity (dark) regions from
pattern number 183 to 671. However, the same region appear
with less intensity in case of malware, as in Figure 1c. More­
over, across the malware heatmaps (Figure 1b and Figure 1c),
no such intense regions can be observed. (2) In the heatmap for
stealthy malware (Figure 1b), one can observe that for a given
overall patterns, the heatmap across stealthy image patterns
are not uniform i.e. one can observe equidistant horizontal
light intensity regions and similar faded horizontal regions,
indicating uneven pattern occurrence in stealthy malware; and
(3) the intensity of patterns are spread across the patterns for
stealthy malware heatmap, whereas localized in the case of
traditional malware, as observed in Figure 1c and Figure 1b.
Altogether, it makes stealthy malware harder to detect. Based
on the above observation, we propose extracting and utilizing
localized features to distinguish stealthy malware, traditional
malware and benign applications.

III. Pr o p o s e d Ma l w a r e De t e c t io n Me t h o d o l o g y

A. Overview of the Proposed Methodology
First, we present the overview of our proposed two-prong

methodology depicted in Figure 2 for an efficient malware
detection, followed by in-depth details. The incoming applica­
tion (traditional malware or benign or stealthy malware) is fed
to both, HPC-based method and localized feature extraction
based computer vision approach simultaneously as shown in
Figure 2. In the HPC-based approach, the prominent HPCs
information is collected during runtime, which is then fed to
ML classifier for malware detection. The prominent HPCs that
are needed, are determined offline by obtaining all feasible

HPC values and feeding to principal component analysis
(PCA) for feature reduction. While, the HPC-based technique
performs the dynamic analysis on incoming file, the local­
ized feature based approach is a static approach that utilizes
computer vision-based processing for malware detection. In
this method, the incoming binary file is converted to a gray­
scale image. The patterns are extracted from this gray-scale
image and are further labelled to compare with the stored
patterns of stealthy and traditional malware by employing a
RNN-LSTM. Depending on the classification confidence from
both the techniques, the class predicted by the technique with
higher confidence is considered as the output class for input
application. We describe the details of individual approaches
below.

B. HPC-based Detection
In the HPC-based detection technique, we require the

microarchitectural event traces captured through HPCs for
malware detection. One of the challenges is that there is
only a limited number of available on-chip HPCs that one
can extract at a given time-instance. However, executing an
application generates few tens of microarchitectural events.
Thus, to perform real-time malware detection, one needs to
determine the non-trivial microarchitectural events that could
be captured through the limited number of HPCs and yield
high detection performance. To achieve this, we use principal
component analysis (PCA) for feature/event reduction on all
the microarchitectural event traces captured offline by itera­
tively executing the application. Based on the PCA, we decide
the most eminent events and monitor them during runtime. The
ranking of the events is determined as follows:

= covjAppi , Z j) (1)
var(Appi) x var(Z j)

where pi is pearson correlation coefficient of any i th appli­
cation. Appi is any i th incoming application. Z i is an output
data contains different classes (backdoor, rootkit, trojan, virus
and worm in our case). cov(Appi ,Z i) measures covariance
between input and output. var(Appi) and var(Z i) measure
variance of both input and output data respectively. Based on
the ranking, we can select most eminent HPCs and monitor
them during runtime for efficient malware detection. These

407

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:28:26 UTC from IEEE Xplore. Restrictions apply.

HPC- based malware detection

Malware/Stealthy
malware ..

Binary to
grayscale

Raster
Scanning

Unique
patterns

Labelling
sequence

RNN-LSTM Predicted Label = X

Label ‘Y’

Label ‘X ’

Localized feature extraction based on image processing

Fig. 2: Proposed hybrid approach for detecting stealthy malware

reduced features collected at runtime are provided as input
to ML classifiers which determine the malware class label
(Y ^ backdoor, rootkit, trojan, virus and worm) with higher
confidence (a). This HPC-based malware detection technique
is fast, robust and accurate in detecting and classifying the
traditional malware but it has overhead in terms of area,
power and latency. Despite the benefits achieved, this approach
does not yield higher performance on stealthy malware due to
contamination of HPC when malware is embedded into the
benign application. To address this critical issue, a computer
vision-based approach is adopted in parallel.

C. Detection based on Localized Feature Extraction
In the computer vision-based detection technique, the appli­

cation binary is converted into a gray-scale image for localized
feature extraction. The incoming binary file is read as a vector
of 8 bit unsigned integers and then structured into a 2D array.
This can be visualized as a gray-scale image in the range
[0,255] (0: black, 255: white) [7]. The width of the image is
fixed to 256 and the height is allowed to vary depending on
the file size. Since, all the files vary in size from 60 kB - 100
kB, the recommended width is 256 [7]. A raster scanning is
performed on the converted binary images as shown in Figure
2, to find the image patterns. Each pattern is of 32x32 block
size. We utilize a cosine similarity to distinguish between
multiple patterns i.e., if the cosine similarity of two patterns is
higher than a threshold (0.75 in this work based on conducted
experiments), they are considered to be same. When more
than one matched patterns are found in the database, then the
one with the highest cosine similarity is considered. Once the
image patterns are recognized for a given binary file, the whole
image binary is converted into a sequence of patterns (Each
pattern is provided with a label). This sequence of labels is fed
to a long short-term memory (LSTM) recurrent neural network
(RNN). RNN can be fed with the sequences of same length.
We perform the padding of zeros to sequence in order to make
its length uniform.

Learning of RNN for the patterns happens as follows. Let
ut and ht denote the input and state vectors, respectively, at

time instance t. Let Win, Wrec, b, Wout, bout be the input
to hidden layer weight matrix, recurrent weight matrix, bias,
output weight matrix and output bias respectively. Let u and e
be the activation function of the hidden layer and output layer
respectively. In our proposed work, tanh is used for hidden
layer and softmax is used for the output. The recurrent models
are then described by the following equations:

ht u x (W*in x u t + ^rec x ht - l + b) (2)

X t = e x (Wout x ht + bout) (3)

This RNN-model is finally used to classify the incoming
stealthy malware binary based on equation (2) and equation (3)
and predicts the corresponding class label X t. The rationale
to utilize RNN is to exploit the temporal as well as spatial
dependencies that attackers utilize to craft stealthy malware.

For the given input application, we have 2 labels (same or
different) predicted through HPC-based and computer vision-
based approaches. In our work, we consider the confidence
of the prediction from both the approaches and the label
from predictor with confidence higher than threshold (a =
75%, which is determined through trial-and-error method) is
considered to be the associated class for the input application.

Sequence Classifiers

Fig. 3: Performance comparison of sequence classifiers

408

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:28:26 UTC from IEEE Xplore. Restrictions apply.

C l a s s i f i e r
P r e c i s i o n

B a c k d o o r

R e c a l l F -1 P r e c i s i o n

R o o t k i t

R e c a l l F -1 P r e c i s i o n

T r o j a n

R e c a l l F - 1 P r e c i s i o n

V i r u s

R e c a l l F - 1 P r e c i s i o n

W o r m

R e c a l l F - 1

C N N 0 .8 8 0 .9 0 .8 7 0 .8 8 0 .9 3 0 .9 0 .8 8 0 .8 1 0 .8 0 .8 8 0 .8 5 0 .8 3 0 .8 8 0 .8 2 0 .7 8

H M M 0 .8 1 0 .8 0 .7 2 0 .8 1 0 .8 5 0 .7 9 0 .8 1 0 .7 6 0 .8 0 .8 1 0 .8 2 0 .8 3 0 .8 1 0 .7 0 .6 7

R N N (P r o p o s e d) 0 .9 3 1 0 .9 4 0 .9 3 0 .9 8 0 .9 7 0 .9 3 0 .9 0 .9 4 0 .9 3 1 0 .9 7 0 .9 3 1 0 .9 3

H P C - b a s e d 0 .8 0 .8 0 .8 3 0 .8 0 .7 6 0 .7 2 0 .8 0 .7 9 0 .7 7 0 .8 0 .7 1 0 .6 8 0 .8 0 .7 0 .6 6

Fig. 4: Comparison of precision, F-1, Recall score

False Positive Rate

Fig. 5: Receiver operating characteristic (ROC)-curve

IV. Ex p e r im e n t a l Re s u l t s
A. Experimental Setup

The proposed methodology is implemented on an Intel
core i7-8750H CPU with 16GB RAM. We have obtained
malware applications from VirusTotal [9] . We utilized benign
applications such as documents (.pdf, .txt, .docx) inside which
the binaries of above mentioned malware classes are integrated
through code obfuscation (code relocation [10]) process to cre­
ate 2500 stealthy malware samples. We have randomly placed
the malware code into a benign file to increase stealthiness.
This process was utilized to create 1600 stealthy malware.
The HPC-based mechanism leverages a single layer neural
network with 10 neurons in hidden layer. The RNN model
has 1 dimensional dropout layer with threshold of 0.7, LSTM
layer with 64 neurons and 0.7 recurrent dropout followed by a
dense layer with softmax activation. It uses ADAM optimizer
and loss is calculated based on the categorical cross entropy.

B. Performance of Malware Detection
For the traditional malware i.e., malware spawned as sepa­

rate thread, an accuracy of nearly 90% is achieved with HPC-
based malware detection. However, for stealthy malware, the
HPC-based malware detection accuracy is shattered to 54%
on an average (These individual results are not plotted for
the purpose of brevity). However, with the proposed hybrid
approach, an accuracy of 94% is achieved respectively despite
of code obfuscation.

Performance comparison of the sequence classifiers can be
illustrated from Figure 3. We observe that for a traditional
malware application, RNN sequence classifier based on our
localized feature extraction method, classifies traditional mal­
ware with the highest accuracy of 94% accuracy. The per­
formance of traditional sequence classification technique de­
teriorate against stealthy malware, while our localized feature
extraction based method achieved an accuracy of nearly 90%
against stealthy malware. The most important observation is
that the accuracy was definite while detecting stealthy malware

which was embedded in benign application using various
obfuscation techniques such as randomized code obfuscation,
code relocation and polymorphism [10].

In addition to accuracy, we evaluate and compare other
performance metrics for malware detection, as shown in Figure
4. Precision score of 0.93 is achieved with the proposed
methodology with an average F-1 score and recall score of
0.94 and 0.96 respectively. We conclude that the recall score
and F-1 score attained with proposed methodology is approxi­
mately 24% higher and 23% higher respectively, compared to
others.

From Figure 5, it is evident that with the proposed mal­
ware detection, the area under the curve is very close to 1,
which indicates a higher robustness. Considering the evalua­
tion evidences, we can substantiate that our proposed hybrid
malware detection technique outperforms other mechanisms in
detecting traditional and stealthy malware.

V. CONCLUSION

We propose a hybrid approach of utilizing architectural
(trace) as well as code properties, consisting of HPCs and
extracted localized features, which are used for stealthy mal­
ware detection. In the HPC-based approach, we determine the
most prominent HPCs for malware detection and feed them to
ML classifier for malware detection. In parallel, we provide
the incoming application to the devised image processing
technique to convert application binary to a gray-scale image
and extract patterns over spatial distribution. For sequence
classification, we utilize a RNN to extract and process the
localized features to attain the highest average accuracy of
90% over stealthy malware and 94% over traditional malware
application. Thus, we conclude that our proposed methodology
is robust in detecting stealthy malware and traditional malware.

Re f e r e n c e s

[1] K. Xiao and et. al., “Hardware trojans: Lessons learned after one decade
of research,” ACM Trans. Des. Autom. Electron. Syst., 2016.

[2] G. Jacob and et.al., “Behavioral detection of malware: a survey towards
an established taxonomy,” Journal in Computer Virology, 08 2008.

[3] N. Patel, A. Sasan, and H. Homayoun, “Analyzing hardware based
malware detectors,” in Design Automation Conf., 2017.

[4] Q. Chen and R. A. Bridges, “Automated behavioral analysis of malware:
A case study of wannacry ransomware,” in Int. Conf. on Machine
Learning and Applications (ICMLA), 2017.

[5] J. Demme and et al., “On the feasibility of online malware detection
with performance counters,” in ISCA’13, 2013.

[6] S. J. Stolfo and et al., “Towards stealthy malware detection,” 2007.
[7] L. Nataraj and et.al., “Malware images: Visualization and automatic

classification,” in Symposium on Visualization for Cyber Security, 2011.
[8] S. Wang and et. al., “High-throughput CNN inference on embedded

ARM big.little multi-core processors,” CoRR, 2019.
[9] G. Sood, “virustotal: R client for the virustotal api,” 2017.

[10] I. You and et. al., “Malware obfuscation techniques: A brief survey,”
in Int. Conf. on Broadband, Wireless Computing, Communication and
Applications, 2010.

409

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:28:26 UTC from IEEE Xplore. Restrictions apply.

