
Entropy-Shield:Side-Channel Entropy Maximization
for Timing-based Side-Channel Attacks

Abhijitt Dhavlle
Dept. of Electrical and Computer Engineering

George Mason University
Fairfax, USA.

adhavlle@gmu.edu

Raj Mehta
Dept. of ECE

George Mason University
Fairfax, USA.

rmehta21@gmu.edu

Setareh Rafatirad
Dept. of Information Sciences and Technology

George Mason University
Fairfax, USA.

srafatir@gmu.edu

Houman Homayoun
Dept. of Electrical and Computer Engineering

University of California
Davis, USA.

hhomyoun@ucdavis.edu

Sai Manoj Pudukotai Dinakarrao
Dept. of Electrical and Computer Engineering

George Mason University
Fairfax, USA.

spudukot@gmu.edu

Abstract—The hardware systems have experienced a plethora
of side-channel attacks (SCAs) in recent years with cache-
based SCAs being one of the dominant threats. The SCAs
exploit the architectural caveats, which invariably leak essential
information during an application’s execution. Shutting down
the side-channels is not a feasible approach due to various
restrictions, such as architectural changes and complexity. To
overcome such concerns and protect the data integrity, we
introduce Entropy-Shield in this work. The proposed Entropy-
Shield aims to maximize the entropy in the leaked side-channel
information rather than attempting to close the side-channels. To
achieve this, the proposed Entropy-Shield introduces carefully
and sensibly crafted perturbations into the victim application,
thereby increasing the entropy of the information obtained by
the attacker to deduce the secret key, while the information
being observed looks legit yet futile. This methodology has been
successfully tested on cache targeted SCAs such as Flush+Reload
and Flush+Flush and the key information retrieved by the
attacker is shown to be ultimately futile, indicating the success
of proposed Entropy-Shield.

Index Terms—Side-Channel Attack (SCA), hardware-security

I. INTRODUCTION

Advancements in the design and complexity of modern

computing systems facilitate encompassing a plethora of func-

tional features to enhance performance and efficiency. Albeit

advancements with evolved features such as cache-sharing and

speculative execution that led to enhanced performance, they

have been exploited for crafting security attacks, termed as

side-channel attacks (SCAs). A wide variety of attacks have

threatened the hardware security domain and SCAs are one

branch of this domain. There have been a variety of previous

works to address threats to the hardware like those posed

by reverse engineering of hardware [1], attacks on machine

learning based malware detectors [2], [3], cache based side-

channel attacks [4], [5], etc. In this work, we address the issues

with SCAs, propose a solution for such attacks , and discuss

the past works. SCAs exploit the architectural vulnerabilities

rather than the caveats in the application and utilize the side-

channels or covert channels to extract the secret information

from the system and are passive.

A rapid increase in the cache targeted SCAs are reported

in recent times. To thwart such threats, our work focuses on

defending against cache targeted SCAs. A plethora of cache

targeted SCAs rely on the timing information to determine

the cache-access (hit or miss) patterns to obtain the accessed

addresses and eventually the secret key from the cache [6]–

[10]. For instance, Flush+Reload SCA [6] depends on the

assumption that the victim and the attacker share the same

memory space and utilizes the cache-access timing informa-

tion to retrieve the secret key from the system. Attacks such as

Prime+Probe [11] supersedes the Flush+Reload attack by not

requiring any shared memory space with the victim to extract

sensitive information.

To address the challenges of cache targeted SCAs, tech-

niques such as static cache partitioning [11], partition locked

cache [12], non-monopolizable (nomo) cache architectures

[13] and other works [14]–[16] are proposed. These techniques

can tremendously reduce the interference between the attacker

and the victim’s memory access, thus providing a better

defense. However, adopting such techniques require alterations

in the cache design and also leads to performance degradation

[11]. To overcome the limitations of the existing works such

as cache-partitioning, randomization of cache architectures are

introduced. The conventional fully associative cache is one

of the preliminary randomization based methods, in which

a memory line can be mapped to any of the existing cache

lines. Similarly, any of the cache lines can be evicted in

random, thus, preventing the leakage of cache-access infor-

mation. Despite its security benefits, this technique incurs

large delays and is power hungry [11]. In a similar way,

random permutation cache [12], newcache [17], [18], random

fill cache [19], and random eviction cache [11] strategies

are implemented. Compared to the cache-partitioning, the

978-1-7281-4207-4/20/$31.00 ©2020 IEEE 161 21st Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

randomization based solutions have shown higher robustness,

yet the above-mentioned methods require modifications to the

hardware and/or software and incur performance penalties.

However, previously proposed defenses are confined to the

specific attack, which makes it difficult to defend against an

emerging wide range of attacks.

As a summary, the unsolved challenges and limitations of

the existing defenses can be outlined as follows: a) side-

channels are inevitable; b) hardware or software modifications

can lead to enhanced security, but might not be practical to

adapt; c) solutions such as VM migrations or switching leads

to performance degradation. To overcome the limitations of

previous works and thwart SCAs, here, we introduce Entropy-

Shield, a defense for timing-based side-channel attacks. In

contrast to the existing works that focus on architectural

changes, the proposed Entropy-Shield primarily focuses on

maximizing the entropy1 of the side-channel information ob-

tained by the attacker without interfering with the original

functionality of the victim application. In the Entropy-Shield

the original application is coupled with a protective application

that is able to facilitate to introduce intelligent perturbations in

the cache-access timing information obtained by the attacker.

In contrast to existing randomization techniques, proposed

Entropy-Shield introduces randomization under the constraint

that the archived information by attacker looks legit and simi-

lar to the normal timing information, yet leading to the wrong

key. The proposed Entropy-Shield introduces perturbations

in the sequence by executing dummy functions that do not

affect the functionality for the victim, but scrambling patterns

observed by the attacker, thereby reducing the entropy and

dissuading the attack. Proposed Entropy-Shield also offers two

different modes of operation: uniform and deceptive modes,

where the user can determine the mode to inject different

types of perturbations. We would like to emphasize that, in

this work ’entropy-maximization’ refers to a reduction in

the useful information obtained by an attacker over side-

channels to decrypt the secret key, or in other words increasing

the randomness of the data. The proposed Entropy-Shield

technique is thoroughly evaluated against both active and

passive cache targeted SCAs with victim utilizing different

keys.

The primary contributions of this work are:

• In contrast to existing randomization techniques, crafted

randomization in Entropy-Shield forces the wrong se-

quence to envisage as a legit pattern, thereby augmenting

the entropy in the obtained information.

• Offer different modes of operation of the proposed shield,

thereby giving liberty to the user to determine the level

of the induced perturbations.

• Evaluate the security offered by the proposed defense on

different encryption methods using different SCAs and

secret keys.

1We define Entropy as the amount of randomness in the obtained data that
tricks the attacker

The rest of the paper is organized as follows. Section II

discusses the previous related works. Section III discusses

the proposed Entropy-Shield. Experimental evaluation of the

proposed Entropy-Shield against different SCAs are presented

in Section IV. Section V concludes with the inferences and

the contributions made.

II. DEFENSES AGAINST SCAS: STATE-OF-THE-ART

In order to secure the hardware systems against cache

targeted SCAs, various defense techniques have been proposed

that use different strategies. We discuss the most relevant and

prominent ones in this section.

a) Isolation by Cache Partitioning [11]: Two processes

that do not share a cache cannot snoop on each others cache

activity. Thus, the idea of this approach is to assign to a

sensitive operation its own cache set, and not to let any other

programs share that part. As the mapping from memory to a

cache set involves the physical memory address, this can be

done by the operating system by organizing physical memory

into non-overlapping cache set groups, also called colors, and

enforcing an isolation policy. However, this leads to inefficient

resource utilization and hardware overheads.

b) Access Randomization [12]: To overcome limitations

of hardware-oriented approaches, randomizing the memory

access is introduced, thus, making the attack much harder, even

impossible. For instance, [11] uses random memory-to-cache

mappings. There is a permutation table for each process, which

enables a dynamic memory address to cache set mappings.

This makes the attacker hard to evict a specific memory line

of the victim process. However, maintaining the mapping and

updating mapping tables penalizes performance.

In addition to these general defense techniques, there are

many recent works in progress to minimize the cache SCAs.

For example, Vladimir Kiriansky proposed a dynamically

allocated way guard (DAWG) [20], a generic mechanism for

secure way partitioning of set-associative structures, including

memory caches. When applied to a cache, unlike the existing

quality of service mechanisms such as Intel’s Cache Allocation

Technology (CAT), DAWG fully isolates hits, misses, and

metadata updates across protection domains. DAWG requires

additional techniques to block exfiltration channels different

from the cache channel.

Similarly, Oleksenko proposed Varys [21], a system that

protects unmodified programs running in SGX enclaves from

cache timing and page table SCAs. The Varys takes a prag-

matic approach of strict reservation of physical cores to

security-sensitive threads, thereby preventing the attacker from

accessing shared CPU resources during enclave execution.

But the downside is it requires the application to monitor

the SSA (SGX State Save Area) value, thus increasing the

overhead. Stephen Crane in [22] explores software diversity

as a defense against side-channel attacks by dynamically

and systematically randomizing the control flow of programs.

This diversity based technique instead transforms programs

to make each program trace unique. This approach offers

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

probabilistic protection against both online and off-line side-

channel attacks. Chongxi Bao’s work in [23] shows that 3D

integration also offers inherent security benefits and enables

many new defense mechanisms that would not be practical

in 2D. Experimental results show that using their cache

design, side-channel leakage is significantly reduced while still

achieving performance gains over a conventional 2D system.

Xiaowan Dong presents in [24] defenses against page table

and last-level cache (LLC) side-channel attacks launched by a

compromised OS kernel.

As seen, the present works either require hardware or

software-stack modifications and/or incurs substantial perfor-

mance penalties. In contrast, proposed Entropy-Shield works

on the principle of maximizing the entropy through crafted

perturbations with less performance loss.

III. PROPOSED ENTROPY-SHIELD

Though it seems the attacker can obtain the secret key in

one iteration, it is nearly impossible to obtain in real scenarios

due to the system noise and other system operations. Hence,

the attacker needs to repeatedly execute the attack to extract

the complete secret information, thereby filtering the system

noise and other impacts. Unlike existing works, considering

these factors, we propose Entropy-Shield, that protects the

victim application by reducing the entropy of the side-channel,

despite attacker executing victim application multiple times.

Listing 1. Spy inserts probes to monitor victim’s cache lines
func Square () {

P robe 1 − Address 0 x086f0 }

f un c M u l t i p l y () {
P robe 3 − Address 0 x08628 }

f unc Modulo / Reduce () {
P robe 3 − Address 0 x08616 }

Similar to all existing works [6] [7], the underlying as-

sumption in successfully probing and eventually capturing

secret data is that the attacker knows the addresses of the

functions that perform sensitive operations. Shield has similar

knowledge as the attacker, where it knows which sections of

the victim code need to be monitored and protected. The

implemented Entropy-Shield is shown in Figure 1, where

the outcome of an encryption algorithm under SCA with

and without our proposed has been presented in (b) and (a)

respectively. We describe and illustrate the system with and

without Entropy-Shield when SCA is launched below.

A. Side-Channel Attack without Entropy-Shield

Figure 1(a) shows how traditional Flush+Reload attack is

able to spy on an (encryption) application to reveal the secret

key. The spy inserts probes at the function addresses of non-

trivial functions such as square, modulo, and the multiply

operations as these are repetitive, and their sequence reveals

the secret key bits. The spy constantly flushes the addresses

at probed locations and monitors it again if it was accessed

by the victim as shown in Listing 1. The spy does not insert

anything into the victim’s code for the probes; it means that

the addresses are monitored for the victim’s access, and when

the probed location is accessed, the spy takes a note of it.

B. Crafted Perturbations in Side-Channel Information
Through Entropy-Shield

For the ease of understanding of Entropy-Shield, lets assume

the width of the secret key is only 16-bits of which after a large

number of attempts the spy is able to capture only 4-bits of it,

as shown in Figure 1(a). In such a case, the part of the key that

both the spy (attacker) and victim (user) were able to deduce

was “1001”, meaning that the attacker was successful in steal-

ing the secret data over the covert channel. If one can increase

the entropy of the side-channel by introducing perturbations

it is nearly impossible for the spy to steal the secret keys.

Though one can assume inserting function calls randomly can

introduce the perturbations, as done in previous works [19], it

is not efficient. The reason for inefficiency is that the attacker

can determine the presence of randomness or uniformity in

the measured data through observed meaningless operation

sequences and can perform post-processing or filtering to

remove the noise and retrieve the key. In contrast, the Shield

induces the perturbations that seem legit, yet deceptive. To

induce such intelligent perturbations Entropy-Shield invokes

the functions in an order from which the attacker can deduce

a key, i.e., for instance, the victim calls the functions that

would be executed if the secret key is ‘1’, though the secret

key bit is ‘0’, thereby inducing additional noise through which

entropy in the leaked information increases. Figure 1(b) shows

how by reducing useful information in the covert channel and

introducing crafted perturbations in the sequence, user (victim)

observes the original key “1001” while the spy (attacker)

observes it as “1111” for uniform and “1011” for deceptive

mode. One shortcoming of such straightforward flipping(all

0’s to 1’s) is that the attacker can detect it and flip the bits.

To thwart such a scenario, we introduce multiple modes of

execution shown in Figure 1(b) using key symbols, discussed

in the later section. The introduction of dummy operations is

shown in Algorithm 1.

Listing 2. Uniform and Deceptive mode of operation
M1 = Uniform ; M2= D e c e p t i v e
{ f unc Modulo (fake , mode , m u l t i p l y d o n e){
I f (M1 and ! m u l t i p l y d o n e){

M u l t i p l y (a rgumen t s = fake , un i fo rm)}
e l s e i f (M2 and ! m u l t i p l y d o n e){

random c a l l M u l t i p l y (a rgument = fake , random)}
e l s e i f (M1 and m u l t i p l y d o n e){

do f a k e Modulo and d i s r e g a r d r e s u l t s ;}
e l s i f (M2 and m u l t i p l y d o n e){

random c a l l f a k e Modulo and d i s r e g a r d r e s u l t s ;}
e l s e i f (! f a k e) {do Modulo o p e r a t i o n on b i t s ;}}

f unc M u l t i p l y (fake , mode){
i f (f a k e and mode= un i fo rm){

d i s c a r d M u l t i p l y r e s u l t s ;
Modulo (fake , uni form , m u l t i p l y d o n e)}

e l s e i f (f a k e and mode=random){
d i s c a r d M u l t i p l y r e s u l t s ;
random c a l l Modulo () ;}

e l s e i f (! f a k e) {
do M u l t i p l y o p e r a t i o n on b i t s ;}}}

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

 Square
{ };

 Reduce
{

Multiply
{ };

 Square
{ };

 Reduce
{

Multiply
{ };

Fig. 1. (a) Traditional side-channel attack on encryption algorithm where the data leaked via covert channel is accessible to the attacker; (b) Victim wrapped
with Entropy-Shield that injects perturbation during run-time to perturb the sensitive information leaked thereby making SCAs laborious and time-consuming.
Only Uniform mode results have been shown

C. Modes of Operation in Entropy-Shield

With the basic mode of operation, the Entropy-Shield per-

turbs the sequence of operations such that all the zeros(0’s) in

the secret key are converted to ones (1’s) from the viewpoint

of the attacker. It is beneficial when the user wants to add

maximum noise to the sequence. However, to enhance the

robustness of the Entropy-Shield and make it laborious for the

attacker, our Shield is equipped with the capability to switch

between two modes of perturbation: uniform and deceptive.

The Uniform mode flips all the 0’s in the sequence to all

1’s. In the ‘deceptive’ mode, the shield randomly perturbs the

sequence, which generates a sequence where only randomly

selected 0’s are converted to 1’s. Effectively, this makes it

difficult for the attacker to differentiate which bits belong to

the original sequence generated due to the victim’s operations

and which ones were not. Moreover, in deceptive mode, the

sequence perturbed or generated by the Shield is different in

each iteration. Listing 2 shows the part of the code where

either of the modes are selected. Each function call, Multiply

or Modulo is given arguments, which helps it to recognize

if the victim or the Shield made the call. For flipping 0’s to

1’s for the Uniform or the Deceptive mode, it requires that

the Modulo call a fake Multiply function, and then the same

Multiply function calls Modulo function again, so the sequence

becomes Square-Modulo-Multiply-Modulo translating to bit

‘1’. Hence, the algorithm first checks if a fake call was made

and it is the first call to Reduce in the sequence using “if (M1
and !multiply done)”

After this is verified using the line shown above, the

program proceeds to the Multiply function with the “fake”

argument, which helps it to drop the results of the Multiply

function and make a fake call. The program control then

returns to Modulo, where this time, it knows that the call to

itself is repeated, and it directly executes a fake call to itself

and ignores the result. Across all the code, the Shield checks

for the mode of operation and repetitively injects perturbations

or randomly does it. Thus the cache is accessed, but at the

same time, it does not affect the results of the victim. The

victim code does not need to be modified because the results

and/or the algorithm is not modified; it keeps running itself

until it encrypts/decrypts the data with the secret key. Hence,

in any mode of operation, the victim does not get affected or

interrupted.

D. Summary of Proposed Entropy-Shield

Algorithm 1 consists of pseudo-code for the Entropy-

Shield. Lines 2-19 belong to the victim’s code encapsulated

by Entropy-Shield with code for dummy functions. Line 9

checks for the mode of operation and then sets the Call flag

accordingly. Lines 10 and 11 perform static perturbations and

random perturbations based on the Uniform and Deceptive

modes respectively. For the Multiply function which calls for

Modulo function again, Lines 16, 17 and 18 perform similar

functions. Probes at Lines 4, 8 and 15 are monitored by the

spy and are not inserted by the Entropy-Shield. Lines 20-25

belong to the spy/attacker, which flushes a particular location

(function addresses in this case) and reloads them to see if

the victim accessed them. Line 26-28 compare the reloaded

address’s access time, and if it happens to be less than the

threshold, then the address was accessed by the victim and

not otherwise. With Flush+Flush, Line 25 would be absent.

The perturbations added modify the sequence of executed

operations, thus giving a notion of actual cache accesses made

by the victim. Hence the attacker observes an incorrect key.

IV. IMPLEMENTATION RESULTS

A. Experimental Setup

We tested the Entropy-Shield on a PC with Intel-i7 proces-

sor running Ubuntu 18.04.2 LTS OS with 16 GB RAM and

GnuPG version 1.4.13. The Flush+Reload [6] and Flush+Flush

[7] attack codes are deployed, which can be found at [25] and

[26] respectively.

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Pseudocode illustrating generation of perturba-

tions with Entropy-Shield

Require: Private Encryption Key
Ensure: Decoded Incorrect Encryption Key
1: Victim Program(Mode = Uniform or Deceptive) {Performs secure-critical

operations that leak data over covert channel}
2: func Square()
3: { - - - - - - - - - - -
4: Probe 1 address
5: - - - - - - - - - }
6: func Modulo()
7: { - - - - - - - - - - -
8: Probe 3 address
9: Call = Uniform or Deceptive

10: If (Call==Uniform) then {dummy call Multiply(); discard Modulo
results}

11: else if (Call==Deceptive) then {dummy call Multiply() at random
intervals; discard Modulo results }

12: - - - - - - - - - }
13: func Multiply()
14: { - - - - - - - - - - -
15: Probe 2 address
16: Call = Uniform or Deceptive
17: If (Call==Uniform) then {dummy call Modulo(); discard Multiply

results}
18: else if (Call==Deceptive) then {dummy call Modulo() at random

intervals; discard Multiply results}
19: - - - - - - - - - }
20: Attack Program{Sample pseudo code that decodes the secret key}
21: Loop 1:
22: clflush (Probe 1); clflush (Probe 2); clflush (Probe 3)
23: wait for an interval;
24: Reload Probe 1; reload Probe 2; reload Probe 3
25: Measure reloading time(t)
26: compare t ,# threshold time(th)
27: if(t > th) => Cache miss
28: if(t < th) => Cache hit
29: jump Loop1
30: Based on perturbed sequence of Cache hit operation, Incorrect Secret

Key is Deduced

B. Entropy-Shield with Flush+Reload Attack

In this section, we present the results of our proposed

Shield. We have chosen the Flush+Reload and Flush+Flush

attack spying on RSA-RSA and DSA-Elgamal encryption

algorithms with the secret key of 4096-bits, as implemented in

the GnuPG. We have evaluated two different secret keys. We

also present the outcome of the Shield with different modes

of operation - uniform and deceptive.

TABLE I
KEY AS VISIBLE TO THE ATTACKER AND THE VICTIM WITH

ENTROPY-SHIELD - UNIFORM MODE OF OPERATION

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker

Flush+Reload
RSA-RSA key 1 0FCFFF 0FCFFF FFFFFF

DSA-Elgamal key 2 587BFA 587BFA FFFFFF

Flush+Flush
RSA-RSA key 3 54FF0B 54FF0B FFFFFF

DSA-Elgamal key 4 89DE00 89DE00 FFFFFF

TABLE II
KEY AS VISIBLE TO THE ATTACKER AND THE VICTIM WITH

ENTROPY-SHIELD - DECEPTIVE MODE OF OPERATION

Attack Type Encryption Key Original Key Victim seen key Key seen by the attacker
Iteration 1 Iteration 100th

Flush+Reload
RSA-RSA key 1 0FCFFF 0FCFFF 5FDFFF 0FEFFF

DSA-Elgamal key 2 587BFA 587BFA 59FBFB 78FFFE

Flush+Flush
RSA-RSA key 3 54FF0B 54FF0B 75FF1B 55FF1F

DSA-Elgamal key 4 89DE00 89DE00 CBDF02 8BDF01

We verified the efficiency of our proposed Entropy-Shield

by examining the perturbations injected both on the victim

and spy end. We modified the GnuPG’s code to output the

injected perturbations along with the sequence of square,

modulo, and multiply operations. Figure 2 presents a graph

of the sequence of operations plotted against time slots versus

the probe time, as seen by the attacker/victim. Figure 2(a)

shows the secret information observed by the victim and the

attacker without the Entropy-Shield. Every Square-Modulo

operation not followed by Multiply is translated as bit ‘0’

and every Square-Modulo-Multiply-Modulo operation as a bit

‘1’ [6]. The probe time in cycles has to be less than the

threshold (value depends on the system, 125 in our work) value

to be considered as accessed by the victim. For simplicity,

we have not shown the operations that took higher than

the threshold. In this case, the victim and the attacker both

see the same information, meaning the victim continues to

operate on encryption/decryption, and the attacker sees the

same operations on the covert channel. Figure 2(b) shows the

sequence of operations when the Entropy-Shield is protecting

the victim in uniform mode. Hence, after perturbations are

injected into the sequence, the victim observes the key as

“011100000111” while the attacker sees it as “111111111111”

since all the ‘0’ bits are flipped to bit ‘1’. These perturbations

are induced irrespective of the key, as shown in Table I

with all zeros converted to ones. Figure 2(c) presents the

operations as observed by the attacker with the deceptive

mode of operation. The red-colored operations are injected

perturbations and do not belong to the original sequence of

the victim’s activities. Unlike the uniform mode, the deceptive

mode injects perturbations randomly and the bit positions that

are perturbed change during every iteration of the victim as

seen in Table II where the key “587BFA” is translated to

“59FBFB” during iteration 1 and “78FFFE” during iteration

100. Parts of the sequence where perturbations were injected

are highlighted in the tables.

C. Entropy-Shield with Flush+Flush Attack

We have evaluated our Entropy-Shield against a passive

attack such as Flush+Flush, whose key extraction results are

presented in Table I and II for both the modes. Similar to

the Flush+Reload, the induced perturbations can deceive the

spy in both uniform and the deceptive modes. For instance,

in the uniform mode, the key gets translated from “54FF0B”

to “FFFFFF” whereas for the deceptive mode, it is observed

as “75FF1B” and “55FF1F” during iteration-1 and iteration

100, respectively. For our proposed defense to work even for

Flush+Flush, it basically needs to ensure that the lines of code

within the square, modulo or multiply functions is cached and

only then it is possible for the attacker to flush a cache line

within the code and consider that the function/operation must

have been accessed by the encryption algorithm. Tables I and

II are ideal case because while executing them on our machine

we reduced the number of background activity. But, in actual

scenarios, the OS and other application activity generate noise

in the cache, making the attack more difficult and owing to

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

which the attacker might not be able to see the key bits in

consecutive order. Hence, as the keys observed by the attacker

are different every time, and with such randomness, it is

challenging for the attacker to retrieve the secret key. Given

the fact that executing SCAs is non-trivial when it comes to

retrieving secret keys amid operating system noise and various

cache operations. The working principle remains the same for

both the RSA and DSA encryption.

D. Performance of Entropy-Shield

Since Entropy-Shield includes additional functional calls,

this would incur overheads in terms of execution time. To

analyze the overheads, we have executed the RSA and DSA

algorithms with and without Entropy-Shield for 1000 times

and averaged the execution time to remove the noise impacts

in measurements. We executed our proposed Entropy-Shield

for the encryption methods mentioned in Table II and with

different keys for over 1000 times. It has been observed that

with the proposed Entropy-Shield, the execution time increases

by 8% on average, which is significantly small and can also

happen in the presence of system noise, thus can be ignored,

and also an attacker cannot detect the Entropy-Shield based

on runtime.

0 10 20 30 40 50 60

0

10
0

 1

50
0

10

0

 1
50

0

10
0

 1

50

Fig. 2. Plot of sequence of operations (a) Original sequence of operations
without Entropy-Shield as seen by both the victim and the attacker; (b)
Sequence of operations with Entropy-Shield in Uniform mode are seen
differently by the attacker and victim; (c) Sequence of operations with
Entropy-Shield in deceptive as seen differently by the attacker and victim

V. CONCLUSION

In this work, we discussed the threats side-channel attacks

(SCAs) posed to the computing systems and delineated the

available defense mechanisms proposed in the past. The down-

sides of the previous works are that they require significant

modifications to the hardware or software architectures to

safeguard cache subsystems. Hence, we proposed Entropy-

Shield which can protect applications from SCAs by reducing

the amount of useful information leaked on the covert channel.

We verified the efficacy of Entropy-Shield on Flush+Reload

and Flush+Flush attack with RSA and Elgamal encryption

methods as victims and found it to be successful. The average

overhead with our proposed shield is 8% compared to without

the defense in place. Our approach can easily be modified to

suit a variety of applications.

REFERENCES

[1] G. Kolhe and et.al., “Security and complexity analysis of lut-based
obfuscation: From blueprint to reality,” in Int. Conference On Computer
Aided Design, 2019.

[2] S. M. P. Dinakarrao et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Design Automation Conf., 2019.

[3] S. Shukla and et.al., “Microarchitectural events and image processing-
based hybrid approach for robust malware detection: work-in-progress,”
in Embedded Systems Week, 2019.

[4] F. Brasser et al., “Advances and throwbacks in hardware-assisted secu-
rity: Special session,” in Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems, 2018.

[5] A. Dhavlle et al., “Work-in-progress: Sequence-crafter: Side-channel
entropy minimization to thwart timing-based side-channel attacks,” in
International Conference on Compliers, Architectures and Synthesis for
Embedded Systems (CASES), 2019.

[6] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Conference on Security, 2014.

[7] D. Gruss et al., “Flush+flush: A fast and stealthy cache attack,” in
Int. Conf. on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2016.

[8] J. Bonneau and I. Mironov, “Cache-collision timing attacks against aes,”
in Int. Conf. on Cryptographic Hardware and Embedded Systems, 2006.

[9] Y. Zhang et al., “Cross-VM side channels and their use to extract private
keys,” in ACM Conf. on CCS, 2012.

[10] D. Harnik et al., “Side channels in cloud services: Deduplication in
cloud storage,” IEEE Security Privacy, vol. 8, no. 6, pp. 40–47, Nov
2010.

[11] Z. He and R. B. Lee, “How secure is your cache against side-channel
attacks?” in Proceedings of the IEEE/ACM, 2017.

[12] Z. Wang and R. B. Lee, “New cache designs for thwarting software
cache-based side channel attacks,” in Proceedings of the ISCA, 2007.

[13] L. Domnitser et al., “Non-monopolizable caches: Low-complexity miti-
gation of cache side channel attacks,” ACM Trans. Archit. Code Optim.,
vol. 8, no. 4, pp. 35:1–35:21, Jan. 2012.

[14] E. Brickell et al., “Software mitigations to hedge aes against cache-based
software side channel vulnerabilities.” IACR Cryptology ePrint Archive,
vol. 2006, p. 52, 01 2006.

[15] J. Kong et al., “Deconstructing new cache designs for thwarting software
cache-based side channel attacks,” in ACM Workshop on Computer
Security Architectures, 2008.

[16] D. Page, “Partitioned cache architecture as a side-channel defence
mechanism,” IACR Cryptology ePrint Archive, vol. 2005, p. 280, 2005.

[17] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in MICRO, 2008.

[18] F. Liu et al., “Newcache: Secure cache architecture thwarting cache
side-channel attacks,” IEEE Micro, vol. 36, no. 5, pp. 8–16, Sep. 2016.

[19] F. Liu and R. B. Lee, “Random fill cache architecture,” in IEEE/ACM
International Symposium on Microarchitecture, 2014.

[20] V. Kiriansky et al., “DAWG: A defense against cache timing attacks in
speculative execution processors,” in MICRO, 2018.

[21] O. Oleksenko et al., “Varys: Protecting SGX enclaves from practical
side-channel attacks,” in USENIX, 2018.

[22] S. Crane et al., “Thwarting cache side-channel attacks through dynamic
software diversity,” in In Network and Distributed System Security
Symposium, 2015.

[23] C. Bao and A. Srivastava, “3d integration: New opportunities in defense
against cache-timing side-channel attacks,” IEEE (ICCD), 2015.

[24] X. Dong et al., “Shielding software from privileged side-channel at-
tacks,” in USENIX Security Symposium, 2018.

[25] T. Hornby. (2016) Flush+reload attack. Last accessed: 15-July-2019.
[Online]. Available: https://github.com/defuse/flush-reload-attacks

[26] (2017) Flush+flush attack. Last accessed: 15-July-2019. [Online].
Available: https://github.com/IAIK/flush flush/tree/master/sc/ff

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:16:18 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

