
SATConda: SAT to SAT-Hard Clause Translator

Rakibul Hassan, Gaurav Kolhe, Setareh Rafatirad, Houman Homayoun, Sai Manoj Pudukotai Dinakarrao

George Mason University, Fairfax, VA, USA Email: {rhassa2,gkolhe,srafatir,hhomayou,spudukot}@gmu.edu

Abstract—Logic obfuscation emerged as an efficient solution to
strengthen the security of integrated circuits (ICs) from multiple
threats including reverse engineering and intellectual property
(IP) theft. Emergence of Boolean Satisfiability (SAT) attacks and
its variants have shown to circumvent the security mechanisms
such as obfuscation and a plethora of its variants. A plethora
of advanced security defenses to thwart the SAT attacks are
introduced. Despite the effectiveness, the imposed overheads in
terms of area and power are unacceptably high. In contrast, our
current work focuses on devising an iterative, dynamic and intel-
ligent SAT-hard clause generator for a given SAT-prone problem,
termed as SATConda. The SATConda is a SAT-hard clause gen-
erator that utilizes a bipartite propagation based neural network
model. The utilized model comprises multiple layers of artificial
neural networks to extract the dependencies of literals and
variables, followed by long short term memory (LSTM) networks
to validate the SAT hardness. The SATConda is trained with
conjunctive normal form (CNF) of the IC netlist that are both
SAT solvable and SAT-hard. Further, the SATConda is equipped
with a SAT-clause generator to convert a CNF from satisfiable
(SAT) to unsatisfiable (unSAT) with minor perturbation (which
translates to minor overheads) so that the SAT-attack cannot
decrypt the keys. To the best of our knowledge, no previous work
has been reported on neural network based SAT-hard clause or
CNF translator for circuit obfuscation. We evaluate our proposed
SATConda’s empirical performance against MiniSAT, Lingeling
and Glucose SAT solvers on ISCAS’85 benchmark circuits.

I. INTRODUCTION

With the semiconductor industries are inclining towards fab-

less business model i.e., outsourcing the fabrication to offshore

foundries, to cope-up with the operational and maintenance

costs, the hardware security threats are exacerbating [1]. This

hardware threat could be in the form of intellectual property

(IP) theft, hardware Trojan (HT) insertions, integrated circuit

(IC) tampering, and over production and cloning [2], [3]. What

is worse, the threat could occur during any phase of the IC

production cycle ranging from design phase, fabrication phase

or even after releasing the design to the market (in the form

of side-channel attacks) [1], malware attacks [4], [5], and

adversarial attacks [6].

To thwart the prevalent security threats, many hardware

design-for-trust techniques have been introduced such as split

manufacturing [7], IC camouflaging, and logic locking a.k.a
logic obfuscation [8]. Among multiple aforementioned tech-

niques, logic locking can thwart the majority of the attacks at

various phases in the IC Production chain [9]. This is because

logic locking requires the correct keys to unlock the true

functionality of the design. Additionally, as a part of the post-

manufacturing process, the activation of IC (i.e., providing

correct keys) will be accomplished in a trusted regime to hide

the functionality from the untrusted foundry and other attacks.

Having key-programmable gates allows the designer or user

to control the functionality using these key inputs.
Although logic locking schemes enhance the security of the

IP, the advent of Boolean satisfiability (SAT) based attack [10],

also known as “oracle-guided” threat model shows that by

applying a few stimuli to the design and analyzing the output,

the key value and functionality of an IC could be extracted

in the order of a few minutes. To implement SAT attack,

the attacker needs access to (a) an obfuscated netlist of IC

(obtained after de-layering fabricated IC or constructed from

layout), and (b) a functional/activated IC, to which the attacker

can apply inputs and monitor the output and functionality. The

extracted netlist is converted into a conjunctive normal form

(CNF1), fed to a SAT solver to determine the keys (assignment

to each boolean variable in the CNF) to decrypt and reverse

engineer the IC/IP. It has been seen that modern SAT solvers

can solve a SAT-problem with up to million variables [11].
To mitigate SAT attack several logic locking [9] techniques

have been proposed. A recently proposed mechanism on logic

locking was presented to mitigate SAT attack by introducing

an additional logic block that makes SAT attack computation-

ally infeasible [12]. Recent literature reported SPS attack [13]

against Anti-SAT defense [12] which can break the Anti-SAT

defense within few minutes.
One of the major challenges in adopting the existing

defenses such as obfuscating large number of gates is the

overheads imposed in terms of area and power [14]. Previ-

ous works [12], [13] consider developing Anti-SAT solutions

through embedding different metrics (properties of netlist that

cannot be translated into CNF) or through heuristic intuitions.

Such defenses involve challenges including complexity, in-

completeness and high probability to exclude parameters that

were not explored in literature. To address these concerns,

we introduce SATConda2, a neural network with bipartite

message passing mechanism that can automatically learn and

determine the properties of a CNF and distinguish SAT and

unSAT problems. To perform this, we trained our neural

network model with both SAT and unSAT CNFs. Thereby the

network learns the SAT and and unSAT clauses and provides

the SAT and unSAT distributions. This learnt features are

further utilized to form a CNF generator that can convert

the provided SAT prone CNF into unSAT (SAT-hard) through

minimal modification to the netlist such as flipping a literal

(through addition of inverter gate or using XNOR instead of

XOR are some of the naı̈ve possibilities) in a clause of CNF

1A CNF is a conjunction (i.e AND) of one or more clauses, where a clause
is a disjunction (i.e OR) of literals.

2SATConda is a SAT framework developed with Anaconda tool.

978-1-7281-4207-4/20/$31.00 ©2020 IEEE 155 21st Int'l Symposium on Quality Electronic Design

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

i.e., converts the SAT distribution to unSAT distribution by

learning the distributions yet preserving the functionality. The

amount of clauses added or the perturbations introduced can

be controlled to determine the trade-off between overheads

and security. The two main contributions of this work are:

• we exploit message passing neural network technique

(MPNN) to convert a CNF file(extracted from the circuit

netlist) of an IC/IP from SAT to unSAT through SAT-

Conda. To the best of our knowledge no previous work

has taken the advantage of message passing algorithm to

learn how to translate a SAT satisfiable CNF file to an

unsatisfiable one and extract the distributions.

• We successfully defend the SAT-attack by introducing

an unSAT block and encrypting that block the the orig-

inal circuit. Using SATConda, we showcase the existing

obfuscation schemes can be made robust with minimal

modifications.

The idea of exploring deep neural network in circuit ob-

fuscation, especially for converting SAT to unSAT is un-

explored and is novel. We evaluated our proposed model

using ISCAS’85 benchmark circuits. We also evaluated the

translated obfuscated file with three different state-of-the-art

SAT solvers. Our translated CNF file remains unsatisfiable

in all of them. In addition to evaluating the SAT hardness,

we have evaluated the area and power overheads incurred

with additional security deployment through SATConda. The

proposed SATConda introduces an area and power overhead

of <5% on an average for ISCAS’85 benchmarks to make

them unSAT, which is significantly smaller compared to other

existing SAT defense techniques.

II. BACKGROUND

Here, we discuss the basic information regarding the logic

locking and the SAT attack.

A. Logic Locking

Logic locking mechanism is implemented in a design by

adding additional gates a.k.a “key-gates” to secure the circuit

(IC/IP) by inducing the randomness in the observable output.

To achieve the desired output from the design, all the key-gates

must be set to their proper input. Any incorrect insertion to

any of the key-gates leads to incorrect output. So an attacker

needs to know the correct assignment of those keys-gates to

decode the actual functionality of the design.

Figure 1a depicts the original circuit and the Figure 1b

shows a logic-locked circuit of the C17 circuit from ISCAS’85

benchmark. The original circuit consists of five inputs with

six NAND gates and two outputs. The encryption is done by

adding three additional gates, termed as key-gates. For Figure

1b, if one assigns (k2, k1, K0) as (1, 0, 1), only then the

circuit will function as desired. Complexity of determining

the key inputs will increase exponentially with the number of

key-gates when attacker performs brute-force search.

B. SAT Attack

Despite logic locking being successful in securing the

IC from reverse engineering, the Boolean Satisfiability-based

(a) (b)

Fig. 1: Logic locking on c17 benchmark circuit. (a) Original

Circuit Design, (b) Encrypted circuit with additional key-gates

(dotted lines/gates) [15]. Desired circuit behavior is achieved

when (k2, k1, k0) = 101

attack commonly known as SAT-attack [10] proposed in

2015 has successfully broke six state-of-the-art logic-locking

defense mechanism proposed. The results have shown that

the circuits can be successfully deobfuscated despite deploy-

ing logic locking solutions within few seconds. To mitigate

this SAT-based attack(s), researchers have proposed several

counter-measures from time to time and new attack model(s)

has also been proposed to counterfeit that defense. We present

a glimpse of SAT-attack here:
1) Attack Model: The attack model was established under

the assumption that the attacker has

• a gate-level netlist extracted from the obfuscated IC.

• an activated functional chip for observing the output

pattern for a given input.

2) Attack Methodology: SAT attack generates a carefully

crafted input patterns and observed the corresponding output

from the activated functional chip. The goal of SAT attack is

to eliminate incorrect key-values at each iteration by observing

the outputs for a given pair of inputs. This input/output pairs

are called Discriminating Input Patterns (DIP). By observing

this DIP, SAT-attack iteratively eliminates numerous wrong

keys and this step is iterated until it eliminates all the wrong

keys and determines the correct key.

III. RELATED WORK

Several techniques have been proposed to defend and secure

the design from reverse engineering threats from SAT-attack.

Here, we review some of the relevant defense techniques to

thwart SAT attacks.

EPIC [16] inserts XOR/XNOR gates randomly as key-gates

to the original netlist to achieve a locked-netlist. One can

decrypt the key-values by inspecting the XOR/XNOR gates

and configuring them as buffers or inverters using the key-

inputs [8].

An additional circuit block, Anti-SAT block [12] was pro-

posed to add with the encrypted circuit to mitigate the SAT

attack. They showed that the time required to expose all the

key-values is an exponential function of the key gates in the

Anti-SAT block. By making the key-size large enough, the

SAT attack becomes computationally complex and infeasible.

Similar work has been reported in SARLock [9]. In this

work they proposed a SARLock block with the encypted

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

circuit that maximizes the number of DIPs, thus making the

SAT-attack runtime exponential with the number of secret-key

bits. This method was shown to be vulnerable to a SAT-based

attack, double-DIP attack reported in [17].

In another work, advanced encryption standard (AES) cir-

cuit [8] was proposed into an encrypted circuit to prevent the

SAT-attack. By adding this AES circuit, [8] makes the attack

computationally intractable as the attacker cannot retrieve the

input of the AES block by observing the output patterns.

However, this techniques suffers from large area overhead

since implementation of AES circuit requires for significant

number of logic gates [12].

In [18] a SAT-resilient cyclic obfuscated circuit design was

proposed by adding dummy paths to the encrypted circuit

which make the combinational loop non-reducible. This de-

fense mechanism was prone to another type of SAT-based

attack named CycSAT [19] which can effectively decrypt the

cyclic encryption.

Unlike the existing defenses discussed above, our proposed

methodology utilizes a neural network and extracts the feature

variables automatically to learn the SAT and unSAT distribu-

tions. These distributions will be further utilized to translate a

CNF from SAT to unSAT by adding additional circuitry with

least overhead compared.

IV. SATCONDA: SAT TO UNSAT TRANSLATOR

In this section, we present the overview of our proposed

SATConda. SATConda is a hybrid Message Passing Neural

Network (MPNN) [20] framework that is able to learn the

SAT-based deobfuscation by message passing across the lit-

erals and clauses for the CNF. SATConda learns at a clause-

by-clause basis rather than all clauses at once. This learning

aids to learn the distribution of SAT and unSAT clauses.

Further, the proposed SATConda is also equipped with a

mechanism to perturb the netlist i.e., update the CNF in a

slight manner to convert the SAT problem (distribution) into

a unSAT (distribution). Figure 2 depicts the operational flow

of the proposed framework.

A. Generating Training Data

In order to train the MPNN of SATConda, we generate a

pair of SAT problems, one of which is satisfiable (SAT) and

the other one is unsatisfiable (unSAT). To do so, we start

with a random clause generator that generates clauses with

varying size (number of literals in each clause). We query

a SAT solver (miniSAT solver [21] in our case) to check

whether the clause is satisfiable or not. Thus, the CNF clauses

and its corresponding SAT hardness i.e., SAT or unSAT is

utilized to train the MPNN. During the training phase, the

utilized MPNN extracts the features from the CNF and learns

the distribution of literals and their relationship from the SAT

hardness perspective. For an efficient training, we train with a

pair of SAT-problems that have difference in one literal with

one being satisfiable and the other one being unsatisfiable, as

shown in bottom row of Figure 2.

B. Neural Network Architecture

We encode the IC obfuscation problem as a SAT problem,

which is further converted as an hierarchical undirected graph,

where each clause is represented with one node and each literal

inside a clause is represented as one node.

SATConda consists of a literal vector (Linit) and a clause

vector (Cinit) extracted from the CNF, which is fed to a

three-layer fully connected MPNN (Lmsg, Cmsg, Lsat), and a

two-layer long-short term memory (LSTM) (Cu, Lu) network.

Hidden states for literals and clauses are denoted by Lh and

Ch respectively. An adjacency Matrix (M) defines the relation

between literals and clauses. This relationship between literals

and clauses are established by connecting edges among them.

Message is passed back and forth along the edges of the

network [20]. At first, a message is passed to a clause from its

neighbouring literals and the clause gets updated. In the next

step, a literal gets message from its neighbouring clause(s)

and also from its complements. This message passing event

occurs back and forth until the model refines a vector space for

every node. The MPNN takes Linit and Cinit as its input and

passes its output (Lmsg, Cmsg) to the LSTM network which

updates the literals Lt+1 and clauses Ct+1 at each iteration,

as follows:

Cu([M
TLmsg(L

t)])→ Ct+1 (1)

Cu([C
t
h])→ Ct+1

h (2)

Lu([Flip(Lt),MCmsg(C
t+1)])→ Lt+1 (3)

Lu([L
t
h])→ Lt+1

h (4)

Lsat votes SAT or unSAT for a particular literal and taking

the average vote of all the literals after T iteration, SATConda

predicts whether a problem is SAT or unSAT.

This message-passing architecture lets the SATConda to

learn the features that can distinguish the SAT solvable CNFs

from unSAT CNFs i.e., learn the distribution of SAT and

unSAT CNFs.

Post training, the proposed SATConda first verifies for the

SAT hardness i.e., SAT solvable or unSAT for a given CNF.

If the CNF is SAT-hard, it terminates. However, if it is SAT

solvable, the SATConda starts perturbing the literals (such as

flipping or adding auxiliary variables) beginning from the last

clause of a given CNF, thus translating a given CNF from SAT

solvable to SAT-hard.

C. SAT to UnSAT Translator

After training our model, the netlist in the form of a CNF

is provided as an input (after extracting from the circuit

netlist) to verify SAT-hardness and convert it to SAT-hard. The

design flow of SATConda is presented in Fig. 2. At first, our

SATConda checks whether this CNF file is satisfiable or not by

querying the state-of-the-art SAT solver (MiniSAT [21]). If the

CNF file is not satifsiable (unSAT) then SATConda terminates.

On the other hand, if the CNF file is satisfiable, then the

SATConda invokes the clause generator to add additional

clauses or perturb the CNF based on the learnt distribution

from the neural network to make the CNF unSAT.

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Architecture of proposed SATConda.

Additional clause generation process starts with getting the

seed values from the trained neural network and are passed to

seed1 and seed2 variables (see Fig. 2). The values of the seed1
and seed2 are determined by fitting the learnt distribution

to Bernoulli and Geometric distributions, respectively. Then,

the clause generator generates a decimal number randomly

between 0 and 1 and checks whether the randomly generated

number is greater than the seed1 or not. If it is greater than the

seed1 value then another variable Literal base is assigned

to one otherwise two. The variable Literal base initializes

the number of literals that a newly generated clause will

have. Then the generator draws samples from a geometric

distribution at a probability of seed2 and assigns that value

to a variable(Rand geo). Adding both the Literal base and

Rand geo we have the length of a new clause (how many

literals in the clause). After that, SATConda samples a vari-

able from the variable list, present in the original CNF file,

without replacement. This variable sampling is done with a

0.5 probability of negating that variable or not. For example

if a CNF file consists of 10 variables and SATConda picks the

9th variable for clause generation, then there is a 50% chance

of taking that variable as “9” or as “-9”. This perturbation

aids in minimizing the imposed overheads and observe the

SAT-hardness, verified through minSAT solver.

When a new clause is generated then SATConda append

that new clause to the original CNF. After appending the new

clause, SATConda again queries the SAT-solver to determine

whether the addition of the new clause or perturbed variable

makes the CNF SAT-hard. If the CNF still remains satisfiable

then SATConda keeps adding or perturbing clauses until

the CNF becomes SAT-hard. Thus, adding or perturbing the

clauses makes the CNF i.e., IC netlist SAT-hard.

D. Summary of SATConda

The clause generation processes mentioned above follow the

Algorithm presented in Algorithm 1. From Algorithm 1 it can

be observed that the solvability of a given CNF file is checked

first, as given in Line 2 of Algorithm 1. Given the condition

that the CNF file is satisfiable, the algorithm generates a new

clause with varying size and adds this newly generated clause

with the previous clauses, as shown in Line 13 of Algorithm 1.

Again the SATConda checks for the SAT solvability for all the

clauses and keeps adding clauses until the CNF file becomes

unSAT (as in Line 15). Once the CNF becomes SAT-hard,

the algorithm provides the modified SAT-hard CNF as output,

given in Line 34 of Algorithm 1.

V. EXPERIMENTS AND RESULTS

In this section we describe the experimental tools used for

performing our experiment and evaluate the impact of SAT-

Conda in terms of SAT hardness and the incurred overheads.

A. Experimental Setup

In this work, we used the MPNN model from [22] to get the

seed required for our random clause generator. We trained the

model with 10,000 CNF files. Out of them 5000 were SAT

and 5000 were unSAT. The training-cost is 0.6930 and the

validation cost is 0.6932, which is sufficiently good enough

and converging to ensure that the model generalizes well with

no over or under-fitting. We evaluated the performance on

ISCAS’85 benchmark circuits shown in Table I. We verified

the satisfiability of CNF files using three different SAT solvers,

MiniSAT [21], Lingeling [23], and Glucose [24]. The rationale

for choosing these solvers is that these solvers form basis

for numerous SAT attacks crafted for deobfuscation in the

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 SATConda Algorithm

Input : solve clauses, seed 1, seed 2
Output : unSAT − cnf

1: is sat := solve(solve clauses)
2: if is sat == True then
3: while true do
4: rand := gen decimal(0− 1)
5: if rand < seed1 then
6: lit base := 1
7: else
8: lit base := 2
9: end if

10: rand geo = rand.geometric(seed 2)
11: literal = lit base+ rand geo
12: new clause := generate clause(n var, literal)
13: solve clauses+ = new clause
14: is sat := solve(solve clauses)
15: if is sat == True then
16: solve clauses+ = new clause
17: else
18: break
19: end if
20: end while
21: solve clauses+ = new clause
22: end if
23: function GENERATE CLAUSE(n var, literal)
24: array size := minimum(n var, literal)
25: clause gen := gen.rand array(n var, array size)
26: rand := gen decimal(0 1)
27: if rand < 0.5 then
28: new clause := clause gen+ 1
29: else
30: new clause := −(clause gen+ 1)
31: end if
32: return new clause
33: end function
34: unSAT − cnf := solve clauses

past few years. The area and power overheads are calculated

using Synopsys Design Compiler, Version: L-2016.03-SP3.

SAED90nm EDK Digital Standard Cell Library is used for

logic synthesis. All the experiments were performed on a

server with 8-core Intel Xeon E5410 CPU, running at 2.33

GHz, with 16 GB RAM. The operating system installed on

the server is CentOS Linux 7.

B. Evaluation

Here, we present the evaluation in terms of SAT-hardness

and the overhead analysis in addition to our empirical findings

of SATConda.

1) SAT-hardness: Table II presents the satisfiability of the

ISCAS’85 benchmark circuits before and after the conversion

through SATConda. It can be seen from this table that all the

original benchmark circuits were satisfiable initially with all

the three SAT-solvers [21], [23], [24]. This indicates that an

TABLE I: ISCAS’85 Benchmark Circuits

Circuit Name #Inputs #Outputs #Gates
c17 5 2 6
c432 36 7 160
c499 41 32 202
c880 60 26 383
c1355 41 32 546
c1908 33 25 880
c2670 233 140 1193
c3540 50 22 1669
c5315 178 123 2307
c7552 207 108 3512

TABLE II: SATConda evaluation on different SAT-solvers

miniSAT Lingeling Glucose
Circuit
Name

Before
Con-
version

After
Con-
version

Before
Con-
version

After
Con-
version

Before
Con-
version

After
Con-
version

c17 � � � � � �

c432 � � � � � �

c499 � � � � � �

c880 � � � � � �

c1355 � � � � � �

c1908 � � � � � �

c2670 � � � � � �

c3540 � � � � � �

c5315 � � � � � �

c7552 � � � � � �

�= Corresponding CNF was satisfiable by the SAT solver
�= Corresponding CNF was unsatisfiable by the SAT solver

attacker could perform a SAT-attack with any of these SAT-

solvers and reverse engineer the IP/IC. Table II also shows

that once the IC/IP design is converted using SATConda, it

becomes SAT-hard, meaning none of the three experimented

SAT-solvers could solve a satisfying assignment for the literals.

This clearly proves that the SATConda can effectively translate

a SAT problem into a SAT-hard problem.

2) Overhead Analysis: In addition to SAT-hardness, we

evaluate the imposed overheads through the conversion. Table

III reports the area and power overhead (in terms of %) for

the best-fit model achieved in our experiment. From Table

III it is observed that except for the c17 and c1355 circuits

the area overhead is around 5% with the proposed SATConda

TABLE III: Report on Area and Power Overhead

Area Overhead (%) Power Overhead (%)
Circuit
Name

SAT-
Conda

LUT
+
LUT
[14]

SAR-
Lock
+
SLL
[9]

SLJI
+ TI
[8]

SAT-
Conda

LUT
+
LUT
[14]

SAR-
Lock
+
SLL
[9]

SLJI
+ TI
[8]

c17 29.32 - - - 32.86 - - -
c432 1.85 - - 21 3.03 - - 70
c499 5.27 - - - 2.29 - - -
c880 7.97 - - - 11.54 - - -
c1355 21.96 - - - 8.01 - - -
c1908 2.31 - - - 1.21 - - -
c2670 2.62 580 - - 2.09 96 - -
c3540 0.35 - - - 0.47 - - -
c5315 4.16 - 8 3 3.76 - 9 12
c7552 2.63 265 6 21.5 1.72 14 6 20

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

(a) (b)

Fig. 3: Overhead analysis for ISCAS’85 benchmark circuit.

(a) Area overhead for different cases, (b) Power overhead for

different cases

technique. The area overhead for c17 is 29.32% and for c1355

is 21.96%. In case of the power overhead, SATConda adds

around 5% power overhead to all the circuits except for c17

and c880. The c17 has a power overhead of 32.86% and c880

has a power overhead of 11.54%.

In addition, we compare our SATConda induced overheads

with the state-of-the-art key-gate based logic-locking obfus-

cation techniques such as LUT+LUT [14], SARLock+SLL

[9], and SLJI+TI [8] in Table III. We report the area and

power overheads as reported in the respective papers and avoid

comparison by speculating the results, as a result, they are

left blank. Our proposed design is not key-gate based, rather

addition of auxiliary gates to the original design or perturbing

the existing design. Our model requires 160.95×, 2.06×, and

6.26× lower area overhead and shows 63.46%, 91.65%, and

96.53% power saving on average compared to LUT+LUT,

SARLock+SLL and SLJI+TI techniques, respectively.

3) Analysis: As the clauses generated are based on the

model learnt by the MPNN, different training data can lead to

different learnt models and different seed values. We analyze

the impact of the seed on the overheads here, as all of them

lead to unSAT in terms of security. We compare three different

models that we achieved from SATConda. We named them

as best-fit model (for seed1 = 1.0 and seed2 = 1.0 -

leading to lowest overhead), mid-fit model(for seed1 = 0.5
and seed2 = 0.5), and worst-fit model(for seed1 = 0.3 and

seed2 = 0.4). Figure 3 shows the overhead compared to

the base circuit with the three different model fits for the

benchmark circuits. Figure 3a depicts the area overhead (%)

and Figure 3b shows the power overhead (%) for different

models. On average, the area and power overhead ranges

from 5.45% to 125.44% and 3.79% to 93.81% respectively,

irrespective of the model fit used for generating or perturbting

the clauses, which is still significantly lower than [14]. As

can be seen that the worst-fit model gives relatively large area

overhead for all the benchmark circuits. The reason behind this

is the worst-fit model adds a significant number of clauses to

the original CNF file. Similar trend can be observed for power

overhead from Figure 3b where the best-fit model outperforms

the other two models with a significant margin.

VI. CONCLUSION

In this work we introduce a neural network based SAT-

hard problem generator, SATConda, towards an intelligent and

stronger logic-locking based obfuscation for hardware security.

We have observed a successful conversion of SAT to unSAT

through SATConda for multiple variable size CNFs. We eval-

uate our framework on the state-of-the-art benchmarks such

as ISCAS’85 and validate with three traditional SAT solvers

regarding the SAT hardness. Our model shows 160.95×,

2.06×, and 6.26× area savings and 63.46%, 91.65%, and

96.53% power savings on average compared to LUT+LUT,

SARLock+SLL, and SLJI+TI based techniques, respectively.

REFERENCES

[1] M. A. Mak, “Trusted defense microelectronics: future access and capa-
bilities are uncertain,” GOVERNMENT ACCOUNTABILITY OFFICE
WASHINGTON DC, Tech. Rep., 2015.

[2] R. Karri et al., “Trustworthy hardware: Identifying and classifying
hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[3] M. Rostami et al., “A primer on hardware security: Models, methods,
and metrics,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1283–1295,
2014.

[4] S. Shukla et al., “Stealthy malware detection using rnn-based automated
localized feature extraction and classifier,” in Int. Conf. on Tools with
Artificial Intelligence, 2019.

[5] S. Shukla et al., “Rnn-based classifier to detect stealthy malware using
localized features and complex symbolic sequence,” Image, vol. 90,
no. 96, pp. 102–108.

[6] S. M. P. Dinakarrao et al., “Adversarial attack on microarchitectural
events based malware detectors,” in Proceedings of the 56th Annual
Design Automation Conference, 2019.

[7] J. J. Rajendran et al., “Is split manufacturing secure?” in Conf. on
Design, Automation and Test in Europe, 2013.

[8] M. Yasin et al., “On improving the security of logic locking,” IEEE
Tran. on Computer-Aided Design of Integrated Circuits and Systems,
vol. 35, no. 9, pp. 1411–1424, 2015.

[9] M. Yasin et al., “SARLock: SAT attack resistant logic locking,” in Int.
Symp. on Hardware Oriented Security and Trust, 2016.

[10] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in Int. Symp. on Hardware Oriented Security and Trust,
2015.

[11] J. Franco and J. Martin, “Handbook of satisfiability frontiers in artificial
intelligence and applications,” 2009.

[12] Y. Xie and A. Srivastava, “Mitigating sat attack on logic locking,” in
Int. Conf. on Cryptographic Hardware and Embedded Systems, 2016.

[13] M. Yasin et al., “Security analysis of anti-sat,” in Asia and South Pacific
Design Automation conf., 2017.

[14] G. Kolhe et al., “On custom LUT-based obfuscation,” in Great Lakes
Symp. on VLSI, 2019.

[15] S. Dupuis and M.-L. Flottes, “Logic locking: A survey of proposed
methods and evaluation metrics,” Journal of Electronic Testing, pp. 1–
19, 2019.

[16] J. A. Roy et al., “Ending piracy of integrated circuits,” Computer,
vol. 43, no. 10, pp. 30–38, 2010.

[17] Y. Shen and H. Zhou, “Double dip: Re-evaluating security of logic
encryption algorithms,” in Great Lakes Symp. on VLSI, 2017.

[18] K. Shamsi et al., “Cyclic obfuscation for creating sat-unresolvable
circuits,” in Great Lakes Symp. on VLSI, 2017.

[19] H. Zhou et al., “Cycsat: Sat-based attack on cyclic logic encryptions,”
in 36th Int. Conf. on Computer-Aided Design, 2017.

[20] J. Gilmer et al., “Neural message passing for quantum chemistry,” in
Int. conf. on Machine Learning, 2017.

[21] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-
clause minimization,” SAT, vol. 2005, no. 53, pp. 1–2, 2005.

[22] D. Selsam et al., “Learning a SAT solver from single-bit supervision,”
arXiv preprint arXiv:1802.03685, 2018.

[23] A. Biere, “Lingeling, plingeling and treengeling entering the sat com-
petition 2013,” 2013.

[24] G. Audemard and L. Simon, “GLUCOSE: a solver that predicts learnt
clauses quality,” SAT Competition, 2009.

Authorized licensed use limited to: George Mason University. Downloaded on November 28,2020 at 03:19:30 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

