
Comprehensive Evaluation of Machine Learning
Countermeasures for Detecting Microarchitectural

Side-Channel Attacks
Han Wang

University of California, Davis, CA,

USA

hjlwang@ucdavis.edu

Hossein Sayadi

California State University, Long

Beach, CA, USA

hossein.sayadi@csulb.edu

Avesta Sasan

George Mason University, Fairfax, VA,

USA

asasan@gmu.edu

Setareh Rafatirad

George Mason University, Fairfax, VA,

USA

srafatir@gmu.edu

Tinoosh Mohsenin

University of Maryland, Baltimore

County, MD, USA

tinoosh@umbc.edu

Houman Homayoun

University of California, Davis, CA,

USA

hhomayoun@ucdavis.edu

ABSTRACT
Microarchitectural Side-Channel Attacks (SCAs) have posed serious

threats to the security of modern computing systems. Such attacks

exploit side-channel vulnerabilities stemming from fundamental

performance-enhancing components such as cache memories. The

existing works on detection of SCAs based on low-level microarchi-

tectural features have considered collecting both victim and attack

applications’ hardware events that are captured from processors’

hardware performance counter (HPC) registers. However, in such

techniques the attack HPCs data can be easily manipulated and/or

corrupted resulting in misleading the SCAs detection mechanism.

In addition, the prior studies have explored the suitability of a lim-

ited number of Machine Learning (ML) algorithms in detecting

microarchitectural SCAs. In response, in this paper, we conduct

a comprehensive evaluation of various machine learning-based

countermeasures for real-time side-channel attack detection based

on low-level microarchitectural features. For this purpose, the vic-

tim applications’ behavior is collected using the HPC features and

analyzed under no attack and attack conditions to avoid poten-

tial manipulation of attackers’ HPCs. We further explore the HPCs

monitoring overhead when microarchitectural features are sampled

at different intervals to find out the appropriate sampling interval

for SCAs detection. For the purpose of thorough analysis, various

types of ML classifiers are implemented and precisely compared

across different evaluation metrics including detection accuracy,

F-measure, robustness (Area Under the ROC Curve), and compu-

tational latency to identify the most efficient ML classifiers for

real-time microarchitectural SCAs detection.

KEYWORDS
Side-Channel Attack, Machine Learning, Microarchitectural Fea-

tures, Real-time SCAs Detection

GLSVLSI ’20, September 7–9, 2020, Virtual Event, China
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7944-1/20/09.
https://doi.org/10.1145/3386263.3407586

ACM Reference Format:
HanWang, Hossein Sayadi, Avesta Sasan, Setareh Rafatirad, Tinoosh Mohs-

enin, and Houman Homayoun. 2020. Comprehensive Evaluation of Machine

Learning Countermeasures for Detecting Microarchitectural Side-Channel

Attacks. In Proceedings of the Great Lakes Symposium on VLSI 2020 (GLSVLSI
’20), September 7–9, 2020, Virtual Event, China. ACM, New York, NY, USA,

6 pages. https://doi.org/10.1145/3386263.3407586

1 INTRODUCTION
With increasing computation and performance demand in mod-

ern computer systems, various components (e.g. cache memories,

branch predictors, out-of-order execution units, etc.) are imple-

mented in processors architectures to minimize the CPU stalls and

boost the performance. Despite the provided performance benefits,

these solutions could cause new microarchitectural vulnerabili-

ties which have been exploited by new type of attacks such as

cache-based side-channel attacks that observe side-channel infor-

mation by causing interference and infer sensitive information.

Side-Channel Attacks (SCAs) primarily exploit hardware vulnera-

bilities to infer sensitive and confidential information [12, 19, 20].

Cache-based SCAs are one of the most common side-channel at-

tacks that can be launched by the attacker remotely and require no

physical access [9, 23]. The proliferation of computing devices in

mobile and Internet-of-Things (IoT) domains further exacerbates

the impact of emerging cybersecurity threats implying the neces-

sity of protecting legitimate users from these attacks and calling

for effective and low-cost security countermeasures. Hence, there

exists an emerging need to address the security risks and chal-

lenges posed by such harmful attacks, calling for effective SCAs

detection methodology which can accurately identify SCAs threats

with minor overhead.

Recent studies on side-channel attack detection such as [4, 6, 24]

examined the application of Machine Learning (ML) techniques

for microarchitectural pattern analysis captured through Hardware

Performance Counters (HPCs) to detect the SCAs with latency by

order of ranging magnitude from milliseconds to seconds. For in-

stance, the work in [4] proposes to detect the SCAs with the usage

of both victim and attack applications’ HPCs traces. Then based

on the obtained HPCs, the correlation between the HPC events

of victims’ and attacks’ traces will be evaluated. Similarly, in [24]

the authors present CloudRadar which aims at detecting cross-VM

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

181

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3386263.3407586
https://doi.org/10.1145/3386263.3407586
https://creativecommons.org/licenses/by/4.0/

side-channel attacks by making use of HPC patterns. The existing

works on detection of SCAs based on low-level microarchitectural

features have considered capturing both victim applications (crypto-

graphic application, e.g. RSA, AES and etc.) and attack applications’

microarchitectural features to detect the existence of the attacks.

However, the attack HPCs data can be easily contaminated that

could mislead the deployed ML-based SCA detection mechanism. In

addition, the prior studies have explored the suitability of a limited

number of ML algorithms in detecting microarchitectural SCAs.

In this work, we perform a comprehensive assessment of var-

ious machine learning-based countermeasures for real-time side-

channel attack detection using HPC-based microarchitectural fea-

tures. To eliminate the impact of missing attack profiling data or

manipulation in the attack applications, this work proposes to de-

tect SCA at real-time using the minimal number of HPC features

(only 4 features). The deployed ML classifiers detect SCAs based

on differentiating HPCs data of only the victim applications under

two victim under attack and victim under no attack conditions. We

further explore the HPCs monitoring overhead when microarchi-

tectural features are sampled at different intervals to find out the

appropriate sampling interval for SCA detection. For the purpose of

thorough analysis, various types of ML classifiers are implemented

and precisely comparedacross different evaluation metrics includ-

ing detection accuracy, F-measure, ROC curve analysis, and com-

putational latency to identify the most accurate and cost-efficient

ML classifiers for real-time microarchitectural SCAs detection.

The remainder of this paper is organized as follows. The back-

ground and motivations are described in Section 2. The proposed

framework and experimental setup details are discussed in Section

3. Section 4 presents the experimental results and provides a com-

prehensive analysis of different ML-based SCA detectors across

various metrics. Finally, Section 5 presents the conclusion of this

study.

2 BACKGROUND AND MOTIVATIONS
In this section, we highlight the background, relate works, and key

motivations for proposing a comprehensive analysis for detecting

side-channel attacks using victims’ low-level hardware features.

2.1 Microarchitectural Side-channel Attacks
The emergence of different hardware components such as cache

memory, branch predictor, etc. to enhance the performance of the

modern microprocessors, have led to exposure of new hardware

vulnerabilities in the systems. This makes a unique opportunity

for the attackers to exploit such vulnerabilities by deducing sensi-

tive information which results in microarchitectural side-channel

attacks.

2.1.1 Flush+Reload. The researches in [3, 22] exploits the vulnera-

bility of page de-duplication technique by monitoring the memory

access lines in the shared pages. This attack targets the Last-Level

Cache in the CPU and flushes out victim applications’ data in the

cache and waits for the victim application to execute. After flushing

the cache, the attacker tries to access the data and measures the

accessing time (latency). Shorter accessing time denotes that the

victim application has accessed the data; otherwise, it has not been

accessed.

2.1.2 Flush+Flush. This SCA relies on the execution time of the

flush instruction [7]. Unlike prior attacks, Flush-Flush does not

make any memory accesses, nor it relies on the access latency

of the data. The execution time of flush instruction depends on

whether the data is stored in the cache. Flush-Flush uses the execu-

tion time of the subsequent flush instruction following the victim

application’s execution. The large execution time of the flush in-

struction is indicative of the fact that, the corresponding data was

brought to the cache and later accessed by the victim application.

2.1.3 Prime+Probe. Without the memory de-duplication restric-

tion, Prime+Probe [11] could be applied to more systems. This type

of SCA consists of two different stages: Prime and Probe. In the

Prime stage, the attacker builds the eviction sets which are group

cache sets causing potential conflict with victim applications and

then fills the cache with the eviction sets. Next, the attacker waits

for the execution of the victim application and then re-accesses the

eviction sets (Probe stage). If the accessing time is long enough, it

means the victim application has accessed the data; otherwise, the

victim application does not access it.

2.2 Related Work
The detection work in [1] monitors HPCs trace of both victim and

attack processes and compare the effectiveness of three ML classi-

fiers: neural network, decision tree C4.5, and K nearest neighbors.

The work in [13] proposes a detection system containing one ana-

lytic server and one or more monitored computing devices to detect

SCAs, including Spectre andMeltdown. The analytic server receives

HPCs data from monitored devices and identifies suspicious core

activity. Once detected, application level monitor will be deployed

on the computing devices and take corrective actions as soon as

finding suspicious application activity. Recent work [21] uses cache

latency to build cache occupancy of victims and attacks. Based on

the cache occupancy relation of the two processes, SCAs can be

deduced.

Chiappetta et al. [4] collected HPC features for building the ML

classifiers and compare three different attacks scenarios includ-

ing finding a correlation between victims and attacks, building

supervised machine learning models based on HPCs from victims

and attacks, and detecting anomalies by validating attack HPCs

as samples and other processes as outliers. Similarly, in [24] the

authors presents CloudRadar which aims at detecting cross-VM

side-channel attacks by deploying HPC patterns. The research in

[13] proposes a detection system containing one analytic server

and one or more monitored computing devices to detect SCAs in-

cluding Spectre and Meltdown. The analytic server receives HPCs

data from monitored devices and identifies suspicious core activ-

ity. Once detected, application level monitor is deployed and take

corrective actions. The work in [10] proposes an online detection

of Spectre by monitoring microarchitectural features using time

series classification.

2.3 Detection based on Victims’ HPCs Data
Current SCAs intentionally cause influence on victim applications’

cache or branch predictor by flushing/priming cache, mistraining

branch predictors and then observe accessing time of the cache sets,

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

182

which changes caching victims’ data and microarchitectural behav-

iors of victim applications [25]. This also provides the opportunity

of detecting SCAs by observing the alteration in microarchitec-

tural behaviors. Furthermore, our experimental results as shown

in Figure 1 indicate that there exists a clear difference between the

behavior of victim under no attack (VNA) and victim under attack

(VA). In this motivational case study, the HPC traces of L1 HIT

for the tested victim application (RSA) under no attack (RSA) and

under L3 Flush Reload attack (RSA with FR) are illustrated. It can

be observed that the L1 HIT of VA shows a significantly different

trend compared to that of VNA. This observation clearly highlights

the effectiveness of using HPCs data of only victim applications

(excluding the impact of attack applications’ HPCs) for detecting

the behavior of SCAs.

Figure 1: L1 HIT of RSA and RSA under Flush Reload attack

Figure 2: Performance overhead with various monitoring
granularities

2.4 HPCs Monitoring Overhead
Hardware performance counters are a set of special-purpose reg-

isters built in modern microprocessors to capture the count of

hardware-related events which have been extensively used to pre-

dict the power, performance, malware detection, and energy effi-

ciency of computing systems [15, 17, 18]. Recently, there has been a

number of work on hardware-based side-channel attacks detection

using HPCs information [2, 14, 20, 24]. The detectors are based on

machine learning classifiers which are trained with processor HPCs

data captured at run-time to appropriately represent application

behavior. However, these works ignored the performance over-

head caused by HPCs monitoring and focused on limited machine

learning classifiers. In this section, we examine the performance

overhead caused by HPCs monitoring tool of both victim and be-

nign applications under various monitoring granularities. As shown

in Figure 2, the x-axis represents applied monitoring granularity

ranging from 1 `𝑠 to 5000 `𝑠 , the primary y-axis represents the exe-

cution time of victim applications and the second y-axis represents

performance overhead under different monitoring granularities.

Execution time under no HPCs monitoring is used to obtain per-

formance overhead percentage. It is observed that, generally, the

smaller the monitoring granularity, the larger the performance over-

head. When the monitoring scale is 1 `𝑠 , performance overhead is

at its highest value reaching to 30%. Due to the large difference of

monitoring overheads, it is important to determine a proper level

of monitoring granularity to balance the detection performance

and HPCs monitoring costs.

Table 1: List of HPC events collected for SCAs detection

L1 HIT L1 MISSES

L2 HIT L2 MISSES

L3 HIT L3 MISSES

All BRANCHES RETIRED BRANCHES MISPREDICTED

BR_NONTAKEN_CONDITIONAL BR_TAKEN_CONDITIONAL

TAKEN_INDIRECT_NEAR_CALL UOPS_RETIRED.ALL

INST_RETIRED.ANY DTLB_LOAD_MISSES

DTLB_STORE_MISSES ITLB_MISSES

3 PROPOSED METHODOLOGY
In this section, we first present details of the experimental setup

and configurations. And then the evaluation methodology shown

in Figure 3 will be introduced. As shown, the proposed approach is

comprised of different steps such as data collection, training phase,

cross validation phase, and testing phase. First, HPC data will be

collected within a) isolated scenario, and b) non-isolated scenario

when sampling interval is set to different value including 50 `s,

100`s, 500`s, and 1000`s, respectively. The "isolated" environment

refers to the case that a computer only processes victim applications;

whereas the "non-isolated" environment denotes that a computer

system processes victim applications on one core while benign

applications are being executed on the rest of the processing cores.

3.1 Experimental Setup and Data Collection
In this work, all experiments are conducted on an Intel I5-3470 desk-

top with 4 cores, 8GB DRAM, and three-level cache system. Victim

applications and side-channel attacks (Flush+Reload, Flush+Flush,

and Prime+Probe) are selected from Mastik [22]. Furthermore,

MiBench [8] benchmark suite is used to represent benign appli-

cations. We further propose using a customized tool to collect

hardware performance counters based on Model-Specific Registers

(MSRs). The proposed customized monitoring tool collects HPCs

per processor at microsecond scale with privileged access to avoid

HPCs contamination from other processes addressing the over-

counting challenges presented in a recent study [5]. Based on the

behavior and functionality of studied SCAs, 16 HPC features are

considered in this work for further analysis as listed in Table 1.

These hardware performance counters data are collected using the

four available HPC registers in the experimented I5 processor at

every sampling interval (50/100/500/1000 `s). Next, both VA and

VNA HPC data from each same sampling intervals are merged to-

gether to create the final dataset for the corresponding sampling

interval.

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

183

Figure 3: Overview of proposed methodology for comprehensive evaluation of ML countermeasures for SCAs detection

Table 2: Evaluated ML classifiers for microarchitectural SCAs detection

ML Category Notation Selected Classifier

Bayesian Network Algorithms that use Bayes Theorem in some core way, like Naive Bayes. NaiveBayes

Neural Network Series of algorithms that attempt to recognize and mimic the human brain operations. MultilayerPerceptron (MLP)

Support Vector Machine Linear model for classification and regression problems. SGD

Lazy Algorithms that use lazy learning, like k-Nearest Neighbors. IBK

Rules Algorithms that use rules, like One Rule. OneR

Trees Algorithms that use decision trees, like Random Forest. J48

3.2 HPCs Feature Reduction
Given the limited number of HPCs available in modern micropro-

cessors (only 4 HPCs on tested Intel I5-3470) to be collected at one

time simultaneously, it is necessary to identify the most important

HPCs for SCAs detection. Furthermore, incorporating irrelevant

features would lead to lower accuracy and performance for the clas-

sifiers. Hence, it is crucial to perform an effective feature reduction

of collected data to alleviate unnecessary computational overheads

and determine the most prominent low-level features [15, 16]. In

order to detect the SCAs at real-time with minimal overhead, we

intend to identify a minimal set of critical HPCs that are feasible to

collect even on low-end processors with small number of HPCs in

a single run. Since experiment platform has 4 HPCs registers, there-

fore, 4 HPC features is selected representing the most important

features for classification. For HPCs reduction, we employ Cor-

relation Attribute Evaluation (𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐸𝑣𝑎𝑙 in Weka)

with its default settings to calculate the Pearson correlation be-

tween attributes (HPC features) and class (VA and VNA conditions).

Correlation attribute evaluation algorithm calculates the Pearson

correlation coefficient between each attribute and class to identify

the most prominent features for SCAs detection depending on the

selected sampling interval.

3.3 ML Classifiers Implementation
Table 2 describes the ML classifiers evaluated in this work that

are selected from five different categories. These ML classifiers in-

clude NaiveBayes, Multi-Layer Perceptron (MLP), SGD, IBK, OneR,

and J48. The rationale for selecting these machine learning mod-

els is that they are from different branches of ML including Bayesian

network-based, neural network, support vectormachine, lazy learning-

based, rule-based, and tree-based techniques covering a diverse

range of learning algorithms which are inclusive to model both

linear and nonlinear problems. In addition, the prediction model

produced by these learning algorithms can be a binary classifica-

tion model which is compatible with the SCAs detection problem

in our work. Furthermore, Weka data mining tool is deployed for

implementing the machine learning classifiers. To validate each of

the utilized ML classifiers, first a standard 70%-30% dataset split

for training and testing is followed. Next, for the percentage split

testing 70% of the randomized data is used for training the classi-

fiers and the rest of 30% is used for testing evaluation. In addition, a

k-fold (k=10) cross-validation is conducted using only the training

dataset.

4 RESULTS EVALUATION
In this section, we evaluate the effectiveness of ML-based SCAs

detectors based on detection accuracy, F-measure, classification

robustness, and incurred costs (monitoring and computation).

4.1 Detection Accuracy vs. Sampling
Granularity

As mentioned in Section 2.4, the performance overhead of HPCs

monitoring ranges from less than 5% to around 30% depending on

the selected monitoring granularity. Due to space limitation, here

we show the influence of sampling granularity with 50`s to 5000`s.

As shown in Figure 4, detection accuracy of the six different ML

classifiers for both cross validation and percentage split testing

accuracy results ranges from 65% to 93% when HPCs are collected

at every 50 `s. It is observed that increasing the sampling time

interval from 50 `s to 100 `s significantly improves the accuracy

for both cross validation and testing by up to 20% (NaiveBayes). An-

other observation is that increasing sampling interval beyond 100

`s does not have considerable influence on accuracy of classifiers.

We believe that it is because using larger sampling interval (>50`s)

could help to alleviate some levels of potential noises which results

in improvement of detection accuracy. As demonstrated before, the

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

184

a) b)

Figure 4: Prediction accuracy comparison with different sampling intervals (50/100/500/1000 `s): a) cross validation accuracy
from six classifiers; b) testing accuracy from six classifiers.

lesser sampling interval results in the higher performance overhead.

From 500 `s to higher sampling intervals, performance overhead

remains stable and less than 5%. Furthermore, the real-time SCAs

detector could spend less amount of time to receive the HPC data

which is leading to a faster SCAs detection process. As a result, it

can be concluded that using 500 `s provides a balanced trade-offs

between detection accuracy, performance overhead, and data collec-

tion latency. Following, we will further demonstrate the robustness

(ROC curve), F-measure and testing latency with 500 `s sampling

interval for the all of the implemented ML-based detectors.

Table 3: F-measure of various classifiers

Classifiers NavieBayes MLP SGD IBK OneR J48

F-measure 0.862 0.934 0.894 0.998 0.945 0.993

4.2 F-measure
F-measure is interpreted as a weighted average of the precision (p)

and recall (r) which is formulated as
2×(𝑝×𝑟)

𝑝+𝑟 . The precision is the

proportion of the sum of true positives versus the sum of positive

instances and the recall is the proportion of instances that are

predicted positive of all the instances that are positive. F-measure is

a more comprehensive evaluation metric over accuracy (percentage

of correctly classified samples) since it takes both the precision

and the recall into consideration. More importantly, F-measure is

also resilient to class imbalance in the dataset which is the case

in our experiments. Table 3 presents the F-measure results of all

implementedML classifiers. 5It can be observed that NaiveBayes has

lowest F-measure, indicating that it is the least effective classifier for

SCAs detection, whereas IBK and J48 have quite similar F-measure

values (0.998 and 0.993) delivering the highest detection rate in

terms of F-measure among all classifiers. It is also notable that MLP

is more effective compared to SGD classifier in detecting SCAs.

4.3 Classification Robustness
Receiver Operating Characteristics (ROC) Curve is produced by

plotting the fraction of true positives rate versus the fraction of

false positives for a binary classifier. The best possible classifier

would thus yield a point in the upper left corner or coordinate (0,1)

of the ROC space, representing 0% false positives and 100% true

positives. Area under the ROC Curve (AUC) metric. The AUC cor-

responds to the probability of correctly identifying "under attack"

and "under no attack" and robustness is referred to how well the

Figure 5: ROC Curve and AUC value of various classifiers

classifier distinguishes between the two classes, for all possible

threshold values. Higher AUC indicates better robustness for ML

classifiers. Figure 5 depicts the ROC Curve of various ML classifiers

with corresponding AUC values. It can be observed that similar

to F-measure, it can be observed in Figure 5 that the NaiveBayes

algorithm performs the worst in terms of ROC Curve, having the

biggest distance to point (0,1). The IBK and J48classifiers are closer

to the coordinate (0,1), indicating higher true positive rate and less

false positive rate compared with other four classifiers evaluated

in this work. Though MLP has lower F-measure compared to IBK

and J48, the ROC curve and AUC value is similar to the one in J48,

indicating that the mispredicted instances are evenly distributed

between "under attack" and "under no attack" classes.

Table 4: Classifiers latency

Classifiers NaiveBayes MLP SGD IBK OneR J48

Latency(`s) 212 252 237 312 235 228

Figure 6: Efficiency comparison among various classifiers

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

185

4.4 Efficiency Analysis: F-measure vs. Latency
Table 4 presents the classification latency of various models, rang-

ing from 212 `s to 312 `s. Compared to other ML classifiers, IBK has

highest latency, indicating more computation and resource utiliza-

tion. While J48 showed to have a similar F-measure as IBK, it has

much lower latency (228 `s). Lastly, to accordingly account for both

performance rate and cost of ML classifiers, in Figure 6 we compare

detection rate over a computational latency (F-measure/Latency)

for various ML classifiers. We use F-measure over latency to iden-

tify the SCA detectors that require small cost and yet can detect the

maliciousness of program with high accuracy and performance. A

classifier with a higher ratio is considered a more efficient detector

than the classifier with lower ratio. As shown in Figure 6, a clear

trade-off is seen between detection rate and latency achievable for

real-time hardware-assisted SCAs detection. TheML classifiers such

as IBK achieves high detection rate, but also higher computational

overhead. The techniques such as NaiveBayes, MLP, SGD, IBK,

OneR, and J48 show relatively smaller timing costs with high SCAs

F-measure. For highly resource-constrained embedded systems,

techniques such as J48 provide smallest computational overhead,

while achieving an F-measure of close to 0.993 on average. Clearly,

the results show trade-offs between F-measure and latency. There-

fore, it is important to compare ML classifiers for effective SCAs

detection by taking all these parameters into consideration.

5 CONCLUSION
In this work, we propose a comprehensive analysis of various Ma-

chine Learning (Ml) classifiers for detecting microarchitectural side-

channel attacks (SCAs) at real-time using the processor’s Hard-

ware Performance Counters (HPCs) information. The proposed

methodology further presents the performance overhead of HPCs

monitoring and evaluates the most suitable sampling interval to

balance performance overhead and detection rate. Moreover, it ad-

dresses the challenge of the lack of attacks applications’ HPCs data

by analyzing the difference between Victim under Attack (VA) and

Victim Under No Attack (VNA) conditions. Our thorough analysis

indicates that HPCs data of VNA and VA show significantly differ-

ent behavior providing the opportunity to detect SCAs with only

victim applications’ HPCs data. We use HPCs importance evalua-

tion with Correlation Attribute Evaluation algorithm to identify

the most prominent HPC features suitable for real-time SCA detec-

tion. For an in-depth analysis, various machine learning classifiers

are implemented and precisely compared in terms of detection ac-

curacy, F-measure, robustness (Area Under the ROC Curve), and

computational latency to determine the most efficient ML classi-

fiers for real-time microarchitectural SCAs detection. The results

of this research highlights important design principles and trade-

offs analysis in implementing accurate and cost-efficient machine

learning-based countermeasures for securing modern processor

architectures against emerging microarchitectural side-channel at-

tacks.

6 ACKNOWLEDGMENT
This research was supported in part by DARPA SSITH program

under the award number 97774952.

REFERENCES
[1] Allaf, Z., and et.all. A comparison study on flush+ reload and prime+ probe

attacks on aes using machine learning approaches. In UK Workshop on Computa-
tional Intelligence (2017), Springer.

[2] Briongos, S., Irazoqi, G., Malagón, P., and Eisenbarth, T. Cacheshield:

Detecting cache attacks through self-observation. In Proceedings of the Eighth
ACM Conference on Data and Application Security and Privacy (2018), ACM,

pp. 224–235.

[3] Chiappetta, M., Savas, E., and Yilmaz, C. Xlate:

https://www.vusec.net/projects/xlate/.

[4] Chiappetta, M., Savas, E., and Yilmaz, C. Real time detection of cache-based

side-channel attacks using hardware performance counters. Applied Soft Com-
puting 49 (2016), 1162–1174.

[5] Das, S., Werner, J., Antonakakis, M., Polychronakis, M., and Monrose, F.

Sok: The challenges, pitfalls, and perils of using hardware performance counters

for security. In 2019 IEEE Symposium on Security and Privacy (SP) (2019), IEEE,
pp. 20–38.

[6] Depoix, J., and Altmeyer, P. Detecting spectre attacks by identifying cache

side-channel attacks using machine learning. Advanced Microkernel Operating
Systems (2018), 75.

[7] Gruss, D., Maurice, C., Wagner, K., and Mangard, S. Flush+ flush: a fast and

stealthy cache attack. In International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment (2016), Springer, pp. 279–299.

[8] Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., and

Brown, R. B.Mibench: A free, commercially representative embedded benchmark

suite. In Fourth WWC-4 (2001), IEEE.
[9] Kocher, P., and et.all. Spectre attacks: Exploiting speculative execution. arXiv

preprint arXiv:1801.01203 (2018).
[10] Li, C., and Gaudiot, J.-L. Online detection of spectre attacks using microarchi-

tectural traces from performance counters. In 2018 30th SBAC-PAD, IEEE.
[11] Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. Last-level cache side-channel

attacks are practical. In Security and Privacy (SP), 2015 IEEE Symposium on (2015),

IEEE, pp. 605–622.

[12] Mirzaeyan, A., Patooghy, A., and Ali, M. F. A novel countermeasure against

fault injection attacks for aes-based cryptosystems. In 2016 24th Iranian Confer-
ence on Electrical Engineering (ICEE) (2016), pp. 1148–1153.

[13] Prada, I., Igual, F. D., and Olcoz, K. Detecting time-fragmented cache at-

tacks against aes using performance monitoring counters. arXiv preprint
arXiv:1904.11268 (2019).

[14] Sabbagh, M., and et.all. Scadet: A side-channel attack detection tool for

tracking prime-probe. In 2018 ICCAD (2018), IEEE.

[15] Sayadi, H., and et al. Machine learning-based approaches for energy-efficiency

prediction and scheduling in composite cores architectures. In ICCD’17 (Nov

2017), pp. 129–136.

[16] Sayadi, H., and et.all. 2smart: A two-stage machine learning-based approach

for run-time specialized hardware-assisted malware detection. In 2019 DATE,
IEEE.

[17] Sayadi, H., Patel, N., PD, S. M., Sasan, A., Rafatirad, S., and Homayoun, H.

Ensemble learning for effective run-time hardware-based malware detection: A

comprehensive analysis and classification. In 2018 55th DAC, IEEE.
[18] Wang, H., Rafatirad, S., and Homayoun, H. A+ tuning: Architecture+ appli-

cation auto-tuning for in-memory data-processing frameworks. In 2019 IEEE
25th International Conference on Parallel and Distributed Systems (ICPADS) (2019),
IEEE, pp. 163–166.

[19] Wang, H., Sayadi, H., Mohsenin, T., Zhao, L., Sasan, A., Rafatirad, S., and

Homayoun, H. Mitigating cache-based side-channel attacks through randomiza-

tion: A comprehensive system and architecture level analysis. In DATE (2020),

IEEE.

[20] Wang, H., Sayadi, H., Rafatirad, S., Sasan, A., and Homayoun, H. Scarf:

Detecting side-channel attacks at real-time using low-level hardware features.

In IEEE International Symposium on On-Line Testing and Robust System Design
(IOLTS’20) (2020), IEEE.

[21] Yao, F., Fang, H., Doroslovacki, M., and Venkataramani, G. Towards a better

indicator for cache timing channels. arXiv preprint arXiv:1902.04711 (2019).
[22] Yarom, Y. Mastik: A micro-architectural side-channel toolkit. Retrieved from

School of Computer Science Adelaide: http://cs. adelaide. edu. au/˜ yval/Mastik
(2016).

[23] Yarom, Y., and et.all. Flush+ reload: A high resolution, low noise, l3 cache

side-channel attack. In USENIX Security Symposium (2014).

[24] Zhang, T., and et.all. Cloudradar: A real-time side-channel attack detection

system in clouds. In RAID (2016), Springer.

[25] Zhang, T., and Lee, R. B. Secure cache modeling for measuring side-channel

leakage. Technical Report, Princeton University (2014).

Session 4B: Advances in Microarchitecture
Security: from Detection of Threats to Mitigation GLSVLSI ’20, September 7–9, 2020, Virtual Event, China

186

	Abstract
	1 Introduction
	2 Background and Motivations
	2.1 Microarchitectural Side-channel Attacks
	2.2 Related Work
	2.3 Detection based on Victims' HPCs Data
	2.4 HPCs Monitoring Overhead

	3 Proposed Methodology
	3.1 Experimental Setup and Data Collection
	3.2 HPCs Feature Reduction
	3.3 ML Classifiers Implementation

	4 Results Evaluation
	4.1 Detection Accuracy vs. Sampling Granularity
	4.2 F-measure
	4.3 Classification Robustness
	4.4 Efficiency Analysis: F-measure vs. Latency

	5 Conclusion
	6 ACKNOWLEDGMENT
	References

