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Understanding the Role of Memory Subsystem on Performance 

and Energy-Efficiency of Hadoop Applications 

 

Abstract — The memory subsystem has always been one of 
the performance bottlenecks in computer systems. Given the 
large size of data, therefore, the questions of whether Big Data 
requires big memory and whether main memory subsystem plays 
an intrinsic role in the performance and energy-efficiency of Big 
Data are becoming important. In this paper, through a 
comprehensive real-system experimental analysis of 
performance, power and resource utilization, we have evaluated 
main memory characteristic of Hadoop MapReduce, a de facto 
standard for big data analytics. Through a methodical 
experimental setup we have analyzed the impact of DRAM 
capacity, operating frequency, and the number of channels on 
power and performance to understand the main memory 
requirements of this important Big Data framework. The 
characterization results across various Hadoop MapReduce 
applications from different domains illustrate that Hadoop 
MapReduce workloads show two distinct behaviors of being 
either CPU-intensive or Disk-intensive. Our experimental results 
showed that DRAM frequency as well as number of channels do 
not play a significant role on the performance of Hadoop 
workloads. On the other hand, our results indicate that 
increasing the number of DRAM channels reduces DRAM power 
and improves the energy-efficiency of Hadoop MapReduce 
applications.  

Keywords— DRAM characterization; Hadoop MapReduce; 

performance; power 

I. INTRODUCTION 

Big Data refers to the data that is massive in volume and 
variety as well as the velocity and veracity for processing [1]. 
Hadoop MapReduce [2] has been considered as a dominant 
framework for Big Data as it supports scalable storage and 
computing resources for Big Data. Therefore, it is important 
to understand the behavior of memory subsystem for this class 
of applications to answer the important question of whether 
Hadoop applications requires large and high performance 
memories. Recently, there have been a number of efforts to 
understand the behavior of Big Data applications by 
benchmarking and characterizing them on the fastest and 
largest possible memory subsystem [3][5][12] [14][15][20]. 
Most of prior studies have focused on the CPU parameters 
such as number of cores, CPU frequency, and cache size, 
performing network or disk analysis to understand Big Data 
application behavior.  

The objective of this work is to evaluate the effect of 
memory subsystem on the performance and power 
consumption of Hadoop MapReduce applications.  In order to 
perform memory subsystem analysis, we have investigated 

three important configurable memory parameters including 
memory capacity, memory frequency, and number of memory 
channels, to determine how these parameters affect the 
performance and power consumption of Hadoop MapReduce 
applications. 

Our evaluation shows that Hadoop MapReduce 
applications do not require a high-end memory subsystem to 
improve the performance. Increasing memory subsystem 
parameters beyond 16 GB, 1333 MHz Frequency and a single 
channel does not enhance Hadoop performance noticeably. In 
addition, to understand whether our observations on memory 
subsystem behavior remains valid when changing 
microarchitecture parameters, we performed further 
architectural study to understand the impact of increasing core 
count, cache size and processor operating frequency on 
memory behavior. 

Based on the micro-architectural analysis, this paper 
makes the following observations: 1) Increasing the number of 
cores beyond 6 cores/node does not enhance performance as it 
increases the number of disk accesses, 2) As the cache 
capacity increases, the accesses to DRAM memory reduces; 
therefore in future architectures with larger cache capacity, we 
anticipate that there won’t be a major benefit of using high 
bandwidth DRAM for Hadoop applications 3) Increasing 
operating frequency of the processor does not improve the 
performance and energy-efficiency of the system as most 
Hadoop applications are I/O intensive 4) Emerging DRAM 
memory technologies such as HMC, HBM, and DDR5 which 
offers high bandwidth are not going to bring noticeable 
performance benefits for Hadoop applications. 

II. RELATED WORKS 

A. Memory characterization 

A recent work on Big Data [3] profiles the memory access 
patterns of Hadoop and noSQL workloads by collecting 
memory DIMM traces using special hardware. This study does 
not examine the effects of memory frequency and number of 
channels on the performance of the system. A more recent 
work [4] provides a performance model that considers the 
impact of memory bandwidth and latency for Big Data, high 
performance, and enterprise workloads. The work in [5] shows 
how Hadoop workload demands different hardware resources. 
This work also studies the memory capacity as a parameter 
that impacts the performance. However, as we will discuss 
later in this work, their finding is in contrast with ours. In [6] 
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the authors evaluate contemporary multi-channel DDR 
SDRAM and Rambus DRAM systems in SMT architectures. 
The work in [11] mainly focuses on page table and virtual 
memory optimization of Big Data and [12] presents the 
characterization of cache hierarchy for a Hadoop cluster. 
These works do not analyze the DRAM memory subsystem. 
In addition, several studies have focused on memory system 
characterization of various non Big Data workloads such as 
SPEC CPU or parallel benchmark suites [7, 8].  Hajkazemi et 
al. explored the performance of Wide I/O and LPDDR 
memories [10]. Tran et al. worked on heterogenous memory 
management [9]. Zhao et al. 3D memory architecture with 
stacked DRAM [31]. 

B. Big Data characterization 

 A recent work introduces a new Big Data benchmark suite 
for spatio-temporal data and analyzes the redundancy among 
different Big Data benchmarks such as ICTBench, HiBench 
and traditional CPU workloads [13]. The work in [14] selects 
four Big Data workloads from the BigDataBench [21] to study 
I/O characteristics, such as disk read/write bandwidth, I/O 
devices utilization, average waiting time of I/O requests, and 
average size of I/O requests. Another work [15] studies the 
performance characterization of Hadoop and DataMPI, using 
Amdahl’s second law. This study shows that a DataMPI is 
more balanced than a Hadoop system. In a more recent work 
[16] the authors analyzes three SPEC CPU2006 benchmarks 
(libquantum, h264ref, and hmmer) to determine their potential 
as Big Data computing workloads. The work in [17] examines 
the performance characteristics of three high performance 
graph analytics. One of their findings is that graph workloads 
fail to fully utilize the platform’s memory bandwidth. In a 
recent work [18], Principle Component Analysis is used to 
detect the most important characteristics of Big Data 
workloads from BigDataBench. To understand Spark’s 
architectural and micro-architectural behaviors, a recent work 
evaluates the benchmark on a 17-node Xeon cluster [19]. Their 
results show that Spark workloads have different behavior 
than Hadoop and HPC benchmarks. Again, this study does not 
consider the effect of memory subsystems on Big Data. The 
work in [20] performs performance analysis and 
characterizations for Hadoop K-means iterations. This study 
also proposes a performance prediction model in order to 
estimates performance of Hadoop K-means iterations, without 
considering the memory requirements. Malik et al. 
characterized Hadoop applications on big-little cores and 
microservers [28, 29, 30].  

III. EXPERIMENTAL SETUP 

A. Workloads 

In our experiments, we used several Hadoop workloads 
from BigDataBench [21] and HiBench [23] suites including 
micro kernels, graph analytics, e-commerce, machine 
learning, web search, and analytical query domains. These 
workloads are presented in Table 1.   

B.  Software stack 

In this study, we use Hadoop MapReduce (version 2.7) as 
our software platform installed on Linux Ubuntu (14.2) 
operating system. Hadoop (Apache) allows for distributed 
processing of large data sets scaling from one node to 
thousands of nodes.  

C. Hardware platform 

To have a comprehensive experiment we used different 
SDRAM memory modules, shown in Table 2. All modules are 
from the same vendor. For running the workloads, and 
monitoring statistics, we used a six-node server with detailed 
characteristics presented in table 3. While network overhead 
in general is influencing the performance of studied 
applications and therefore the characterization results, for big 
data applications, as shown in a recent work [27], a modern 
high speed network improves the performance only a small 
2% performance. We therefore used a high speed 1 Gbit/s 
network to avoid making it a performance bottleneck for this 
study.    

D. Methodology 

Our experimental methodology is focused on the objective 
of understanding how Hadoop MapReduce uses the memory 
subsystem. For this goal we used Intel Performance Counter 
Monitoring tool (PCM) [22] to understand memory as well as 
processor behavior. In our experiments, we collect OS-level 
performance information with DSTAT tool. Some of the 
metrics that we used for study are memory footprint, memory 
bandwidth, L2, and Last Level Cache (LLC) hits per 
instruction (HPI), instruction per cycle (IPC), core C0 state 
residency, and power consumption. For our experiments, we 
swept the processors’ parameters when using memories with 
three different frequency setting of 1333 MHz, 1600 MHz, and 
1866 MHz. We repeat each experiment for different number 
of memory channels (1CH, 2CH, and 4CH).    

IV. RESULT AND DISCUSSION 

A. Memory analysis 

1) Effect of memory channels: The off-chip memory peak 
bandwidth equation is shown in EQ. (1). 

Table 1: Studied workloads 

Workload wordcount sort grep terasort bayes naïve bayes kmeans pagerank aggregation join scan 

Domain micro kernel micro kernel micro kernel 
micro 

kernel 

e-

commerce 
e-commerce 

machine 

learning 
websearch 

analytical 

query 

analytical 

query 

analytical 

query 

Input type text data text data data data graph data data data data 

Input size 

(huge) 
1.1 T 178.8G 1.1 T 178.8G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G 

Input size 

(large) 
183.6G 29.8G 183.6G 29.8G 5G 5G 18.7G 3.1G 1.8G 1.8G 1.8G 

Input size 

(medium) 
30.6G 3G 30.6G 3G 1.6G 1.6G 3.7G 1.3G 1G 1G 1G 

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench BigDataBench HiBench HiBench HiBench HiBench HiBench 

 



Bandwidth = Channels × Frequency × Width     EQ. (1) 

 Our result shows that increasing the number of channels 
does not reduce the execution time (at most 4%) of Hadoop 
applications, presented in Figure 1. Therefore, increasing the 
memory bandwidth is not a good option to improve the 
performance.   

2) Effect of DRAM frequency: As results in Figure 2 show, 
similarly we don’t observe any major improvement of 
execution time when increasing memory frequency from 1333 
MHz to 1866 MHz. Previous section showed that 4X increase 
in the bandwidth resulted by increasing the number of 
channels from 1 to 4 can gain only 4% performance benefit. 
Therefore, it is clear why a 1.4X increase in bandwidth as a 
result of frequency increase cannot increase the performance 
noticeably.   

This finding may mislead to use the lowest memory 
frequency for Hadoop applications. Based on EQ. (3), read 
latency of DRAM depends on the memory frequency. 

Read latency = 2 × (CL / Frequency)          EQ.  (3) 

 However, for a DDRx technology (DDR4 or 5), this 
latency is set fixed by the manufacturer with controlling CAS 
latency (CL). This means two memory modules with different 
frequency (1333 MHz and 1866 MHz) and different CAS 
Latency (9 and 13) can have the same read latency of 13.5 ns, 
but provide different bandwidth per channel (10.66 GB/s and 
14.93 GB/s). Hence, as along as reduction of frequency does 
not change the read latency, it is recommended to reduce 
DRAM frequency for Hadoop applications. Furthermore, we 
demonstrated that Hadoop applications do not require a high 
bandwidth off-chip memory, therefore they do not require a 

high frequency memory as well. The reason is that Hadoop 
workloads are not memory intensive. Later in this paper we 
will discuss the insensitivity of Hadoop applications to main 
memory parameters.  

3) Effect of memory capacity: Figure 3 presents the impact 
of memory capacity per node on the average execution time of 
workloads. The results indicate no significant benefit of using 
a high capacity DRAM. In order to evaluate the effect of 
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Figure 1: Effect of memory channel on the execution time 
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Figure 2: Effect of memory frequency on the execution time 

Table 3: Hardware Platform 

Hardware 

Type 
Parameter Value 

Motherboard Model Intel S2600CP2 

CPU 

Model Intel Xeon E5-2650 v2 

# Core 8 

# Threads 16(disabled) 

Base Frequency 2.6 

Turbo Frequency 3.4 

TDP 95 

L1 Cache 32 * 2 KB 

L2 Cache 256 KB 

L3 Cache 20 MB 

Memory Type 

Support 

DDR3 

800/1000/1333/1600/1867 

Maximum 
Memory 

Bandwidth 

59.7 GB/S 

Max Memory 
Channels 

supported 

4 

Disk 

(SSD) 

Model HyperX FURY 

Capacity 480 GB 

Speed 500 MB/S 

Network 

Interface Card 

Model ST1000SPEXD4 

Speed 1000 Mbps 

 

Table 2: Memory modules’ part numbers and parameters studied in this work 

DDR3 4 GB 8 GB 16 GB 32 GB 

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 --- 

1600 MHz D51272K111S8 D1G72K111S D2G72K111 --- 

1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32 

 



DRAM capacity on Hadoop MapReduce workloads 
performance, we examined 7 different memory capacities 
from 4 GB to 64 GB size. Considering the workloads, 
doubling the capacity (from 4 GB to 8 GB) only reduces the 
execution time by less than 5%, on average. Beyond 16 GB, 
DRAM capacity does not affect the performance. This is due 
to the fact that Hadoop is not an in-Memory system framework 
and it is more relying on the Disk for operation and data 
storage.    

4) Data size implication on memory capacity usage:  

Hadoop uses disk as storage and rely on a cluster of servers 
to process data in a distributed manner. The ability of 
MapReduce frameworks is that each map task processes one 
block of data on HDFS at a time. Hence, this relieves the 
pressure of large input data on the memory subsystem. 
Therefore, regardless of input size, the memory subsystem 
utilization remains almost constant in these frameworks. We 
have performed experiments with three different input data 
sizes, namely medium, large, and huge data. Figure 4 shows 
the memory usage of Big Data frameworks as a function of 
input data size. Our result shows that the standard deviations 
of Hadoop memory usage are less than 250 MB and regardless 
of input data size, the average memory usages and maximum 
memory usages are close.  

5) Data size implication on memory bandwidth usage:  Our 
results presented in Figure 4 reveal that the size of input data 
does not noticeably change the memory behavior of Hadoop 
Framework. This is because of the fact that the memory 
bandwidth usage depends on the cache miss ratio (more on this 
later in the paper). Cache behavior is more application 
dependent rather than data-size dependent. Consequently, by 
increasing the size of input, the cache hit ratio remains almost 
the same. Therefore, while increasing the input size increases 
the job completion time, the DRAM bandwidth requirements 
of applications do not change noticeably.  

B. Architectural analysis 

1) Workload classification: As the main goal of this paper 
is to study the combined impact of node architecture and 
workload characteristics, it is important to first classify those 
workloads. To this goal, we divided workloads into two major 
groups of CPU intensive and I/O intensive. Our decision 
criteria for this classification is based on the average Disk 
bandwidth usage as has been shown in Figure 5. We classify 
Sort, Grep, and Scan applications to be Disk-intensive while 
others to be CPU-intensive.  

2) Number of cores per node implication: Figure 6 
demonstrates the effect of increasing the number of cores on 
each node on the performance of two groups. For CPU 
intensive applications and when the core count is less than 6, 
the performance improvement is close to the ideal case. The 
interesting trend is that increasing the number of cores does 
not improve the performance of Hadoop applications 
noticeably beyond 6 cores. As the increase in the number of 
cores increases the number of accesses to the disk, the disk 
becomes the bottleneck of the system. At 8 cores, the CPU 
utilization is dropped to 15% for I/O intensive applications. It 
is important to note that our Disk is SSD (Solid State Drive) 
and the performance benefit could have diminished at even 
lower number of cores if a HDD drive was used. We also 
projected the performance of 12 and 16 cores by regression 
model derived from our experimental results.    

4) Cache implication: Xeon processor has a 3-level cache 

hierarchy.  Figure 7 shows Hadoop applications’ cache hit 

rates for level 2 (L2) and last level cache (LLC). This Figure 

reveals an important characteristic of Hadoop applications. 

Contrary to the simulation’s results in recent work reporting 

cache hit ratio to be below 10% for Big Data applications [3], 

our real-system experimental result shows Hadoop 

applications have a much higher cache hit ratio, which helps 

reducing the number of accesses to the main memory. On the 

other hand, the average LLC hit rate for Hadoop workloads are 

found to be 55% which implies that these applications are 

cache friendly. The reason of high cache hit ratio is that each 

parallel task of Hadoop framework processes data in a 

sequential manner. This behavior increases the chances of a 

cache hit; therefore, it prevents excessive access to DRAM and 

eliminates the necessity of using a high bandwidth memory. 

Consequently, CPUs with larger LLC will show similar 

characteristics. Therefore, we can conclude that due to cache 

behavior, Hadoop MapReduce applications are not memory 
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Figure 4: Impact of the size of input data on memory usage 
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Figure 5. Disk access of Big Data applications 
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intensive. This explains why increasing the memory frequency 

and increasing the number of channels cannot improve the 

performance of Hadoop applications. This finding helps the 

server designers to avoid over provisioning the memory 

subsystem for Hadoop MapReduce applications. Therefore, 

we anticipate that in future architectures with higher cache 

capacity, the observations made in previous section regarding 

memory behavior of Hadoop applications remain valid.   

C. Power analysis 

 Figure 8 reports the DRAM power consumption. Our 

result shows that by increasing the frequency of DRAM 

from1333 MHz to 1866 MHz, the power consumption 

increases by almost 15%. This verifies that the major 

component of DRAM power is the static power. However, 

increasing the number of channels reduces the power 

consumption. An important observation is that a memory with 

four channels consumes 40% less power than a memory with 

single channel. This is due to the fact that DRAM channels are 

designed to increase the efficiency of interleaving. As a result, 

the memory controller can manage accesses more efficiently, 

which in turn reduces the power consumption. Despite the 

small/no impact on performance, the number of memory 

channels significantly affects power consumption.   

Figure 9 depicts the average normalized Energy Delay 
Product (EDP) of Hadoop applications. EQ. (4) indicates how 
we calculated this metric.  

EDP = (CPU energy + DRAM energy) × Execution time  EQ. (4) 

The results reveal that across all studied applications 

increasing the number of channels improves EDP, as memory 

controller power management policy can benefit from such 

increase and reduce the power consumption accordingly. The 

EDPs results of 1-channel and 2-channel memory are found to 

be very similar. The trend in this figure shows that increasing 

the memory frequency increases EDP across all CPU 

operating frequency points. This implies that a high frequency 

off-chip memory is not a good choice for EDP optimization 

for this class of Big Data applications.  Furthermore, we 

observe that high CPU frequency is not an optimal choice for 

EDP, as it wastes energy (note that most of Hadoop 

applications are Disk-intensive). A configuration with a single 

channel running at 1866 MHz memory frequency when CPU 

is running at 1.2 GHz is shown to have the worst EDP. On the 

other hand, a configuration with 4-channel and 1333 MHz 

memory frequency when CPU is running at 1.9 GHz is shown 

to have the best EDP for Hadoop applications.  

1) Guideline for energy efficiency: As a guideline to 

improve the energy efficiency of Hadoop server clusters, the 

results suggested using a low frequency DRAM memory with 

high number of channels which reduces the power 

consumption of DRAM by 57% without any performance 

degradation and therefore improves EDP by 16%. Moreover, 

our study shows that using low capacity DRAM results in 

significant energy savings for Hadoop applications, as they do 

not require high capacity memory. Reducing the power 

consumption of DRAM in a Hadoop cluster, where there are 

thousands of nodes, is important as our observation shows 

DRAM consumes 14% of the total server power.  

2) Emerging memory technology consideration: Based on 

our real-system experimental results on DDR3 memory 

technology we anticipate that using emerging memory 

technologies such as DDR5, High Bandwidth memory (HBM) 

and Hybrid Memory Cube (HMC) is not going to bring 

noticeable performance benefit in Hadoop MapReduce 

applications. DDR4 only provides more bandwidth per 

channel while increases read latency by up to 2-3% as 

compared to DDR3. HMC is an expensive technology which 

provides 5X~10X more bandwidth that is far beyond Hadoop 
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Figure 8: DRAM power consumption 
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applications’ requirements. Additionally, our results indicate 

that using embedded memory can be an energy efficient 

solution for Hadoop applications without degradation in the 

performance. DDR3L and LPDDR3 both can provide the 

required memory bandwidth and capacity for Hadoop 

applications with the same read latency and consuming 

significantly less energy.   

V. CONCLUSION 

This paper answers the important questions of whether 

Hadoop MapReduce applications running on an non-

virtualized platform require high capacity-bandwidth DRAM 

memory and what the role of memory for energy-efficient 

processing of this important class of applications is. 

Characterizing memory behavior of Hadoop applications is 

the key to answer these important questions as it helps guiding 

scheduling decision in cloud scale architectures as well as it 

helps making decisions in designing server cluster for 

MapReduce computing. While latest work have performed a 

limited study on memory characterization of Hadoop 

applications, this work performs a comprehensive analysis of 

memory requirements of Hadoop applications through a 

methodical real-system experimental evaluation setup to 

provide new insights. Based on the results presented in this 

paper and contrary to reports in latest work, we observed that 

Hadoop MapReduce applications aren’t memory intensive. 

This shows that Hadoop applications do not require high 

frequency, high capacity, and large number of channels 

memory for higher performance. Based on microarchitectural 

analysis we anticipate that in future architectures with higher 

number of cores, larger cache capacity and higher operating 

frequency, similar observations will remain valid indicating 

no urgent need for a high-end DRAM for Hadoop MapReduce 

Computing.  
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Figure 9: Average normalized energy delay Product 
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