
This paper appears in the 2017 IGSC Invited Papers on Emerging Topics in Sustainable Memories

978-1-5386-3470-7/17/$31.00 ©2017 IEEE

Understanding the Role of Memory Subsystem on Performance

and Energy-Efficiency of Hadoop Applications

Abstract — The memory subsystem has always been one of
the performance bottlenecks in computer systems. Given the
large size of data, therefore, the questions of whether Big Data
requires big memory and whether main memory subsystem plays
an intrinsic role in the performance and energy-efficiency of Big
Data are becoming important. In this paper, through a
comprehensive real-system experimental analysis of
performance, power and resource utilization, we have evaluated
main memory characteristic of Hadoop MapReduce, a de facto
standard for big data analytics. Through a methodical
experimental setup we have analyzed the impact of DRAM
capacity, operating frequency, and the number of channels on
power and performance to understand the main memory
requirements of this important Big Data framework. The
characterization results across various Hadoop MapReduce
applications from different domains illustrate that Hadoop
MapReduce workloads show two distinct behaviors of being
either CPU-intensive or Disk-intensive. Our experimental results
showed that DRAM frequency as well as number of channels do
not play a significant role on the performance of Hadoop
workloads. On the other hand, our results indicate that
increasing the number of DRAM channels reduces DRAM power
and improves the energy-efficiency of Hadoop MapReduce
applications.

Keywords— DRAM characterization; Hadoop MapReduce;

performance; power

I. INTRODUCTION

Big Data refers to the data that is massive in volume and
variety as well as the velocity and veracity for processing [1].
Hadoop MapReduce [2] has been considered as a dominant
framework for Big Data as it supports scalable storage and
computing resources for Big Data. Therefore, it is important
to understand the behavior of memory subsystem for this class
of applications to answer the important question of whether
Hadoop applications requires large and high performance
memories. Recently, there have been a number of efforts to
understand the behavior of Big Data applications by
benchmarking and characterizing them on the fastest and
largest possible memory subsystem [3][5][12] [14][15][20].
Most of prior studies have focused on the CPU parameters
such as number of cores, CPU frequency, and cache size,
performing network or disk analysis to understand Big Data
application behavior.

The objective of this work is to evaluate the effect of
memory subsystem on the performance and power
consumption of Hadoop MapReduce applications. In order to
perform memory subsystem analysis, we have investigated

three important configurable memory parameters including
memory capacity, memory frequency, and number of memory
channels, to determine how these parameters affect the
performance and power consumption of Hadoop MapReduce
applications.

Our evaluation shows that Hadoop MapReduce
applications do not require a high-end memory subsystem to
improve the performance. Increasing memory subsystem
parameters beyond 16 GB, 1333 MHz Frequency and a single
channel does not enhance Hadoop performance noticeably. In
addition, to understand whether our observations on memory
subsystem behavior remains valid when changing
microarchitecture parameters, we performed further
architectural study to understand the impact of increasing core
count, cache size and processor operating frequency on
memory behavior.

Based on the micro-architectural analysis, this paper
makes the following observations: 1) Increasing the number of
cores beyond 6 cores/node does not enhance performance as it
increases the number of disk accesses, 2) As the cache
capacity increases, the accesses to DRAM memory reduces;
therefore in future architectures with larger cache capacity, we
anticipate that there won’t be a major benefit of using high
bandwidth DRAM for Hadoop applications 3) Increasing
operating frequency of the processor does not improve the
performance and energy-efficiency of the system as most
Hadoop applications are I/O intensive 4) Emerging DRAM
memory technologies such as HMC, HBM, and DDR5 which
offers high bandwidth are not going to bring noticeable
performance benefits for Hadoop applications.

II. RELATED WORKS

A. Memory characterization

A recent work on Big Data [3] profiles the memory access
patterns of Hadoop and noSQL workloads by collecting
memory DIMM traces using special hardware. This study does
not examine the effects of memory frequency and number of
channels on the performance of the system. A more recent
work [4] provides a performance model that considers the
impact of memory bandwidth and latency for Big Data, high
performance, and enterprise workloads. The work in [5] shows
how Hadoop workload demands different hardware resources.
This work also studies the memory capacity as a parameter
that impacts the performance. However, as we will discuss
later in this work, their finding is in contrast with ours. In [6]

Hosein Mohammadi Makrani1, Shahab Tabatabaei2, Setareh Rafatirad1, Houman Homayoun1

1George Mason University, 2 Rayanmehr Company

{hmohamm8, srafatir, hhmoayou}@gmu.edu

the authors evaluate contemporary multi-channel DDR
SDRAM and Rambus DRAM systems in SMT architectures.
The work in [11] mainly focuses on page table and virtual
memory optimization of Big Data and [12] presents the
characterization of cache hierarchy for a Hadoop cluster.
These works do not analyze the DRAM memory subsystem.
In addition, several studies have focused on memory system
characterization of various non Big Data workloads such as
SPEC CPU or parallel benchmark suites [7, 8]. Hajkazemi et
al. explored the performance of Wide I/O and LPDDR
memories [10]. Tran et al. worked on heterogenous memory
management [9]. Zhao et al. 3D memory architecture with
stacked DRAM [31].

B. Big Data characterization

 A recent work introduces a new Big Data benchmark suite
for spatio-temporal data and analyzes the redundancy among
different Big Data benchmarks such as ICTBench, HiBench
and traditional CPU workloads [13]. The work in [14] selects
four Big Data workloads from the BigDataBench [21] to study
I/O characteristics, such as disk read/write bandwidth, I/O
devices utilization, average waiting time of I/O requests, and
average size of I/O requests. Another work [15] studies the
performance characterization of Hadoop and DataMPI, using
Amdahl’s second law. This study shows that a DataMPI is
more balanced than a Hadoop system. In a more recent work
[16] the authors analyzes three SPEC CPU2006 benchmarks
(libquantum, h264ref, and hmmer) to determine their potential
as Big Data computing workloads. The work in [17] examines
the performance characteristics of three high performance
graph analytics. One of their findings is that graph workloads
fail to fully utilize the platform’s memory bandwidth. In a
recent work [18], Principle Component Analysis is used to
detect the most important characteristics of Big Data
workloads from BigDataBench. To understand Spark’s
architectural and micro-architectural behaviors, a recent work
evaluates the benchmark on a 17-node Xeon cluster [19]. Their
results show that Spark workloads have different behavior
than Hadoop and HPC benchmarks. Again, this study does not
consider the effect of memory subsystems on Big Data. The
work in [20] performs performance analysis and
characterizations for Hadoop K-means iterations. This study
also proposes a performance prediction model in order to
estimates performance of Hadoop K-means iterations, without
considering the memory requirements. Malik et al.
characterized Hadoop applications on big-little cores and
microservers [28, 29, 30].

III. EXPERIMENTAL SETUP

A. Workloads

In our experiments, we used several Hadoop workloads
from BigDataBench [21] and HiBench [23] suites including
micro kernels, graph analytics, e-commerce, machine
learning, web search, and analytical query domains. These
workloads are presented in Table 1.

B. Software stack

In this study, we use Hadoop MapReduce (version 2.7) as
our software platform installed on Linux Ubuntu (14.2)
operating system. Hadoop (Apache) allows for distributed
processing of large data sets scaling from one node to
thousands of nodes.

C. Hardware platform

To have a comprehensive experiment we used different
SDRAM memory modules, shown in Table 2. All modules are
from the same vendor. For running the workloads, and
monitoring statistics, we used a six-node server with detailed
characteristics presented in table 3. While network overhead
in general is influencing the performance of studied
applications and therefore the characterization results, for big
data applications, as shown in a recent work [27], a modern
high speed network improves the performance only a small
2% performance. We therefore used a high speed 1 Gbit/s
network to avoid making it a performance bottleneck for this
study.

D. Methodology

Our experimental methodology is focused on the objective
of understanding how Hadoop MapReduce uses the memory
subsystem. For this goal we used Intel Performance Counter
Monitoring tool (PCM) [22] to understand memory as well as
processor behavior. In our experiments, we collect OS-level
performance information with DSTAT tool. Some of the
metrics that we used for study are memory footprint, memory
bandwidth, L2, and Last Level Cache (LLC) hits per
instruction (HPI), instruction per cycle (IPC), core C0 state
residency, and power consumption. For our experiments, we
swept the processors’ parameters when using memories with
three different frequency setting of 1333 MHz, 1600 MHz, and
1866 MHz. We repeat each experiment for different number
of memory channels (1CH, 2CH, and 4CH).

IV. RESULT AND DISCUSSION

A. Memory analysis

1) Effect of memory channels: The off-chip memory peak
bandwidth equation is shown in EQ. (1).

Table 1: Studied workloads

Workload wordcount sort grep terasort bayes naïve bayes kmeans pagerank aggregation join scan

Domain micro kernel micro kernel micro kernel
micro

kernel

e-

commerce
e-commerce

machine

learning
websearch

analytical

query

analytical

query

analytical

query

Input type text data text data data data graph data data data data

Input size

(huge)
1.1 T 178.8G 1.1 T 178.8G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G

Input size

(large)
183.6G 29.8G 183.6G 29.8G 5G 5G 18.7G 3.1G 1.8G 1.8G 1.8G

Input size

(medium)
30.6G 3G 30.6G 3G 1.6G 1.6G 3.7G 1.3G 1G 1G 1G

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench BigDataBench HiBench HiBench HiBench HiBench HiBench

Bandwidth = Channels × Frequency × Width EQ. (1)

 Our result shows that increasing the number of channels
does not reduce the execution time (at most 4%) of Hadoop
applications, presented in Figure 1. Therefore, increasing the
memory bandwidth is not a good option to improve the
performance.

2) Effect of DRAM frequency: As results in Figure 2 show,
similarly we don’t observe any major improvement of
execution time when increasing memory frequency from 1333
MHz to 1866 MHz. Previous section showed that 4X increase
in the bandwidth resulted by increasing the number of
channels from 1 to 4 can gain only 4% performance benefit.
Therefore, it is clear why a 1.4X increase in bandwidth as a
result of frequency increase cannot increase the performance
noticeably.

This finding may mislead to use the lowest memory
frequency for Hadoop applications. Based on EQ. (3), read
latency of DRAM depends on the memory frequency.

Read latency = 2 × (CL / Frequency) EQ. (3)

 However, for a DDRx technology (DDR4 or 5), this
latency is set fixed by the manufacturer with controlling CAS
latency (CL). This means two memory modules with different
frequency (1333 MHz and 1866 MHz) and different CAS
Latency (9 and 13) can have the same read latency of 13.5 ns,
but provide different bandwidth per channel (10.66 GB/s and
14.93 GB/s). Hence, as along as reduction of frequency does
not change the read latency, it is recommended to reduce
DRAM frequency for Hadoop applications. Furthermore, we
demonstrated that Hadoop applications do not require a high
bandwidth off-chip memory, therefore they do not require a

high frequency memory as well. The reason is that Hadoop
workloads are not memory intensive. Later in this paper we
will discuss the insensitivity of Hadoop applications to main
memory parameters.

3) Effect of memory capacity: Figure 3 presents the impact
of memory capacity per node on the average execution time of
workloads. The results indicate no significant benefit of using
a high capacity DRAM. In order to evaluate the effect of

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

Wordcount Sort Grep Terasort PageRank Bayes nBayes Kmeans Agre. Join Scan

N
o
rm

a
li
z
e
d
 e

xe
c
u
ti
o
n

ti
m

e

Figure 1: Effect of memory channel on the execution time

0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

1
3
3
3
M

1
6
0
0
M

1
8
6
6
M

Wordcount Sort Grep Terasort PageRank Bayes nBayes Kmeans Aggre. Join Scan

N
o

rm
a

li
z
e

d
 e

xe
c
u

ti
o

n

ti
m

e

Figure 2: Effect of memory frequency on the execution time

Table 3: Hardware Platform

Hardware

Type
Parameter Value

Motherboard Model Intel S2600CP2

CPU

Model Intel Xeon E5-2650 v2

Core 8

Threads 16(disabled)

Base Frequency 2.6

Turbo Frequency 3.4

TDP 95

L1 Cache 32 * 2 KB

L2 Cache 256 KB

L3 Cache 20 MB

Memory Type

Support

DDR3

800/1000/1333/1600/1867

Maximum
Memory

Bandwidth

59.7 GB/S

Max Memory
Channels

supported

4

Disk

(SSD)

Model HyperX FURY

Capacity 480 GB

Speed 500 MB/S

Network

Interface Card

Model ST1000SPEXD4

Speed 1000 Mbps

Table 2: Memory modules’ part numbers and parameters studied in this work

DDR3 4 GB 8 GB 16 GB 32 GB

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 ---

1600 MHz D51272K111S8 D1G72K111S D2G72K111 ---

1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32

DRAM capacity on Hadoop MapReduce workloads
performance, we examined 7 different memory capacities
from 4 GB to 64 GB size. Considering the workloads,
doubling the capacity (from 4 GB to 8 GB) only reduces the
execution time by less than 5%, on average. Beyond 16 GB,
DRAM capacity does not affect the performance. This is due
to the fact that Hadoop is not an in-Memory system framework
and it is more relying on the Disk for operation and data
storage.

4) Data size implication on memory capacity usage:

Hadoop uses disk as storage and rely on a cluster of servers
to process data in a distributed manner. The ability of
MapReduce frameworks is that each map task processes one
block of data on HDFS at a time. Hence, this relieves the
pressure of large input data on the memory subsystem.
Therefore, regardless of input size, the memory subsystem
utilization remains almost constant in these frameworks. We
have performed experiments with three different input data
sizes, namely medium, large, and huge data. Figure 4 shows
the memory usage of Big Data frameworks as a function of
input data size. Our result shows that the standard deviations
of Hadoop memory usage are less than 250 MB and regardless
of input data size, the average memory usages and maximum
memory usages are close.

5) Data size implication on memory bandwidth usage: Our
results presented in Figure 4 reveal that the size of input data
does not noticeably change the memory behavior of Hadoop
Framework. This is because of the fact that the memory
bandwidth usage depends on the cache miss ratio (more on this
later in the paper). Cache behavior is more application
dependent rather than data-size dependent. Consequently, by
increasing the size of input, the cache hit ratio remains almost
the same. Therefore, while increasing the input size increases
the job completion time, the DRAM bandwidth requirements
of applications do not change noticeably.

B. Architectural analysis

1) Workload classification: As the main goal of this paper
is to study the combined impact of node architecture and
workload characteristics, it is important to first classify those
workloads. To this goal, we divided workloads into two major
groups of CPU intensive and I/O intensive. Our decision
criteria for this classification is based on the average Disk
bandwidth usage as has been shown in Figure 5. We classify
Sort, Grep, and Scan applications to be Disk-intensive while
others to be CPU-intensive.

2) Number of cores per node implication: Figure 6
demonstrates the effect of increasing the number of cores on
each node on the performance of two groups. For CPU
intensive applications and when the core count is less than 6,
the performance improvement is close to the ideal case. The
interesting trend is that increasing the number of cores does
not improve the performance of Hadoop applications
noticeably beyond 6 cores. As the increase in the number of
cores increases the number of accesses to the disk, the disk
becomes the bottleneck of the system. At 8 cores, the CPU
utilization is dropped to 15% for I/O intensive applications. It
is important to note that our Disk is SSD (Solid State Drive)
and the performance benefit could have diminished at even
lower number of cores if a HDD drive was used. We also
projected the performance of 12 and 16 cores by regression
model derived from our experimental results.

4) Cache implication: Xeon processor has a 3-level cache

hierarchy. Figure 7 shows Hadoop applications’ cache hit

rates for level 2 (L2) and last level cache (LLC). This Figure

reveals an important characteristic of Hadoop applications.

Contrary to the simulation’s results in recent work reporting

cache hit ratio to be below 10% for Big Data applications [3],

our real-system experimental result shows Hadoop

applications have a much higher cache hit ratio, which helps

reducing the number of accesses to the main memory. On the

other hand, the average LLC hit rate for Hadoop workloads are

found to be 55% which implies that these applications are

cache friendly. The reason of high cache hit ratio is that each

parallel task of Hadoop framework processes data in a

sequential manner. This behavior increases the chances of a

cache hit; therefore, it prevents excessive access to DRAM and

eliminates the necessity of using a high bandwidth memory.

Consequently, CPUs with larger LLC will show similar

characteristics. Therefore, we can conclude that due to cache

behavior, Hadoop MapReduce applications are not memory

0

1000

2000

3000

4000

5000

medium large huge

Average memory capacity usage (MB)

Max. memory Capacity usage (MB)

Ave. Memory Bandwidth usage (MBpS)

Figure 4: Impact of the size of input data on memory usage

0

10

20

30

40

50

60

70

80

ReadWrite ReadWrite ReadWrite ReadWrite ReadWrite ReadWrite

Wordcount Sort Grep Pagerank nBayes Kmeans

M
B
p
S

Figure 5. Disk access of Big Data applications

0.95

1

1.05

1.1

4
GB

8
GB

16
GB

24
GB

32
GB

48
GB

64
GB

N
o

rm
a

liz
e

d

E
xe

c
u

ti
o

n
 T

im
e

Memory capacity per node

Figure 3: Impact of Memory capacity on the execution time

intensive. This explains why increasing the memory frequency

and increasing the number of channels cannot improve the

performance of Hadoop applications. This finding helps the

server designers to avoid over provisioning the memory

subsystem for Hadoop MapReduce applications. Therefore,

we anticipate that in future architectures with higher cache

capacity, the observations made in previous section regarding

memory behavior of Hadoop applications remain valid.

C. Power analysis

 Figure 8 reports the DRAM power consumption. Our

result shows that by increasing the frequency of DRAM

from1333 MHz to 1866 MHz, the power consumption

increases by almost 15%. This verifies that the major

component of DRAM power is the static power. However,

increasing the number of channels reduces the power

consumption. An important observation is that a memory with

four channels consumes 40% less power than a memory with

single channel. This is due to the fact that DRAM channels are

designed to increase the efficiency of interleaving. As a result,

the memory controller can manage accesses more efficiently,

which in turn reduces the power consumption. Despite the

small/no impact on performance, the number of memory

channels significantly affects power consumption.

Figure 9 depicts the average normalized Energy Delay
Product (EDP) of Hadoop applications. EQ. (4) indicates how
we calculated this metric.

EDP = (CPU energy + DRAM energy) × Execution time EQ. (4)

The results reveal that across all studied applications

increasing the number of channels improves EDP, as memory

controller power management policy can benefit from such

increase and reduce the power consumption accordingly. The

EDPs results of 1-channel and 2-channel memory are found to

be very similar. The trend in this figure shows that increasing

the memory frequency increases EDP across all CPU

operating frequency points. This implies that a high frequency

off-chip memory is not a good choice for EDP optimization

for this class of Big Data applications. Furthermore, we

observe that high CPU frequency is not an optimal choice for

EDP, as it wastes energy (note that most of Hadoop

applications are Disk-intensive). A configuration with a single

channel running at 1866 MHz memory frequency when CPU

is running at 1.2 GHz is shown to have the worst EDP. On the

other hand, a configuration with 4-channel and 1333 MHz

memory frequency when CPU is running at 1.9 GHz is shown

to have the best EDP for Hadoop applications.

1) Guideline for energy efficiency: As a guideline to

improve the energy efficiency of Hadoop server clusters, the

results suggested using a low frequency DRAM memory with

high number of channels which reduces the power

consumption of DRAM by 57% without any performance

degradation and therefore improves EDP by 16%. Moreover,

our study shows that using low capacity DRAM results in

significant energy savings for Hadoop applications, as they do

not require high capacity memory. Reducing the power

consumption of DRAM in a Hadoop cluster, where there are

thousands of nodes, is important as our observation shows

DRAM consumes 14% of the total server power.

2) Emerging memory technology consideration: Based on

our real-system experimental results on DDR3 memory

technology we anticipate that using emerging memory

technologies such as DDR5, High Bandwidth memory (HBM)

and Hybrid Memory Cube (HMC) is not going to bring

noticeable performance benefit in Hadoop MapReduce

applications. DDR4 only provides more bandwidth per

channel while increases read latency by up to 2-3% as

compared to DDR3. HMC is an expensive technology which

provides 5X~10X more bandwidth that is far beyond Hadoop

0
1
2
3
4
5
6
7

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

W.COUNT SORT GREP T.SORT P.RANK BAYES NBAYES KMEANS AGGRE. JOIN SCAN

D
R

A
M

 P
O

W
E

R
 (
W

A
T

T
)

2CH 1CH 4CH

Figure 8: DRAM power consumption

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 L3 L2

Figure 7: LLC and L2 hit ratio 0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18

P
E

R
F

O
R

M
A

N
C

E

NUMBER OF CORES PER PROCESSOR

CPU intensive I/O intensive Expectation

Figure 6: The number of core per processor’s effect on the
performance

applications’ requirements. Additionally, our results indicate

that using embedded memory can be an energy efficient

solution for Hadoop applications without degradation in the

performance. DDR3L and LPDDR3 both can provide the

required memory bandwidth and capacity for Hadoop

applications with the same read latency and consuming

significantly less energy.

V. CONCLUSION

This paper answers the important questions of whether

Hadoop MapReduce applications running on an non-

virtualized platform require high capacity-bandwidth DRAM

memory and what the role of memory for energy-efficient

processing of this important class of applications is.

Characterizing memory behavior of Hadoop applications is

the key to answer these important questions as it helps guiding

scheduling decision in cloud scale architectures as well as it

helps making decisions in designing server cluster for

MapReduce computing. While latest work have performed a

limited study on memory characterization of Hadoop

applications, this work performs a comprehensive analysis of

memory requirements of Hadoop applications through a

methodical real-system experimental evaluation setup to

provide new insights. Based on the results presented in this

paper and contrary to reports in latest work, we observed that

Hadoop MapReduce applications aren’t memory intensive.

This shows that Hadoop applications do not require high

frequency, high capacity, and large number of channels

memory for higher performance. Based on microarchitectural

analysis we anticipate that in future architectures with higher

number of cores, larger cache capacity and higher operating

frequency, similar observations will remain valid indicating

no urgent need for a high-end DRAM for Hadoop MapReduce

Computing.

REFERENCES

[1] Bertino et al., “Big Data-Opportunities and Challenges,” in IEEE 37th
Annual Computer Software and Applications Conf., pp. 479-480. 2013.

[2] The Apache Software Foundation, “What is Apache Hadoop?”
Available at: https://hadoop.apache.org/

[3] M. Dimitrov et al., “Memory system characterization of Big Data
workloads,” in IEEE Conf. on Big Data, pp. 15-22, October 2013.

[4] R. Clapp et al., “Quantifying the Performance Impact of Memory
Latency and Bandwidth for Big Data Workloads,” in IEEE Symp. on
Workload Characterization (IISWC) , pp. 213-224, October 2015.

[5] I. Alzuru et al., “Hadoop Characterization,”
in Trustcom/BigDataSE/ISPA 2015, Vol. 2, pp. 96-103, August 2015.

[6] Z. Zhu, and Z. Zhang, “A performance comparison of DRAM memory
system optimizations for SMT processors,” in the 11th HPCA, pp. 213-
224, February 2005.

[7] Barroso et al., “Memory system characterization of commercial
workloads,” ACM SIGARCH Computer Architecture News 26, no. 3,
pp. 3-14, 1998.

[8] Jaleel, and Aamer, “Memory characterization of workloads using
instrumentation-driven simulation–a pin-based memory
characterization of the SPEC CPU2000 and SPEC CPU2006 benchmark
suites,” Intel Corporation, VSSAD, 2007.

[9] Tran, Le-Nguyen, et al. "Heterogeneous memory management for 3D-
DRAM and external DRAM with QoS." In ASP-DAC, 2013.

[10] M. Hajkazemi et al., “Wide I/O or LPDDR? Exploration and analysis of
performance, power and temperature trade-offs of emerging DRAM
technologies in embedded MPSoCs,” In ICCD, pp. 62-69, 2015.

[11] Basu et al., “Efficient virtual memory for big memory servers,” ACM
SIGARCH Computer Architecture News, vol. 41, no. 3, pp. 237-248,
2013.

[12] Jia et al., “Characterizing data analysis workloads in data centers,”
in IEEE IISWC, pp. 66-76, 2013.

[13] W. Xiong et al., “A characterization of Big Data benchmarks,” in IEEE
Conf. on Big Data, pp. 118-125, October 2013.

[14] F. Pan et al., “I/O characterization of Big Data workloads in data
centers,” in BPOE, pp. 85-97, 2014.

[15] F. Liang et al., “Performance characterization of hadoop and data mpi
based on amdahl's second law,” in NAS, pp. 207-215, August 2014.

[16] K. Hurt, and E. John, “Analysis of Memory Sensitive SPEC CPU2006
Integer Benchmarks for Big Data Benchmarking,” in Proc. PABS, pp.
11-16, February 2015

[17] S. Beame et al., “Locality exists in graph processing: Workload
characterization on an Ivy Bridge server,” in the IEEE IISWC, pp. 56-
65, October 2015.

[18] Z. Jia et al., “Characterizing and subsetting Big Data workloads,” in
IEEE IISWC, pp. 191-201, October 2014.

[19] T. Jiang et al., “Understanding the behavior of in-memory computing
workloads,” in the IEEE IISWC, pp. 22-30, 2014.

[20] Issa, J. “Performance characterization and analysis for Hadoop K-means
iteration” Journal of Cloud Computing, 5(1), 1, 2015.

[21] Lei et al. “Bigdatabench: A Big Data benchmark suite from internet
services,” in IEEE 20th HPCA, pp. 488-499, 2014.

[22] Available at: https://software.intel.com/en-us/articles/intel-
performance-counter-monitor

[23] S. Huang et al., “The hibench benchmark suite: Characterization of the
mapreducebased data analysis,” in IEEE ICDE, pp. 41–51, 2010.

[24] M. Malik et al., “Characterizing Hadoop applications on microservers
for performance and energy efficiency optimizations,” in ISPASS, pp.
153-154, 2016.

[25] Ch. Bienia et al., “The PARSEC benchmark suite: characterization and
architectural implications,” in Proc. PACT, pp. 72-81, 2008.

[26] Ferdman, Michael, et al. "Clearing the clouds: a study of emerging scale-
out workloads on modern hardware." ACM SIGPLAN Notices. Vol. 47.
No. 4. ACM, 2012.

[27] Ousterhout, Kay, et al. "Making Sense of Performance in Data Analytics
Frameworks." NSDI. Vol. 15. 2015.

[28] M. Malik et al., “Big data on low power cores: Are low power embedded
processors a good fit for the big data workloads?,” In ICCD, pp. 379-
382, 2015.

[29] M. Malik et al., “System and architecture level characterization of big
data applications on big and little core server architectures,” In IEEE Big
Data, pp. 85-94, 2015.

[30] M. Malik et al., “Big vs little core for energy-efficient Hadoop
computing,” In DATE, pp. 1480-1485, 2017.

[31] Zhao et al., "Temperature aware thread migration in 3D architecture
with stacked DRAM." In ISQED, 2013.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1
3

3
3

M

1
6

0
0

M

1
8

6
6

M

1.2G 1.9G 2.6G

A
V

E
R

A
G

E
 N

O
R

M
A

L
IZ

E
D

 E
D

P

1CH 2CH 4CH

Figure 9: Average normalized energy delay Product

https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

