
Hadoop Workloads Characterization
for Performance and Energy Efficiency

Optimizations on Microservers
Maria Malik , Katayoun Neshatpour , Setareh Rafatirad, and Houman Homayoun

Abstract—The traditional low-power embedded processors such as Atom and ARM are entering into the high-performance server
market. At the same time, big data analytics applications are emerging and dramatically changing the landscape of data center
workloads. Emerging big data applications require a significant amount of server computational power. However, the rapid growth in the
data yields challenges to process them efficiently using current high-performance server architectures. Furthermore, physical design
constraints, such as power and density have become the dominant limiting factor for scaling out servers. Numerous big data
applications rely on using Hadoop MapReduce framework to perform their analysis on large-scale datasets. Since Hadoop
configuration parameters as well as system parameters directly affect the MapReduce job performance and energy-efficiency, joint
application, system, and architecture level parameters tuning is vital to maximize the energy efficiency for Hadoop-based applications.
In this work, through methodical investigation of performance and power measurements, we demonstrate how the interplay among
various Hadoop configuration parameters, as well as system and architecture level parameters affect not only the performance but also
the energy-efficiency across various big data applications. Our results identify trends to guide scheduling decision and key insights to
help improving Hadoop MapReduce applications performance, power, and energy-efficiency on microservers.

Index Terms—Application characterization, hadoop MapReduce, big data, microservers, energy-efficiency, performance, power and
performance tuning parameters

Ç

1 INTRODUCTION

LOW power is one of the main constraints for the design
of battery-operated embedded systems. However, this

design objective has come into attention for high performance
and data center systems as well. The main reasons are power
constraint of the processor and physical constraint of the chip
as the semiconductor industry has reached its physical scaling
limits. In fact, continuous increase in the number of transistors
on a chip has led to the so-called “dark silicon” phenomena,
where the power density does not allow all the transistors to
turn on simultaneously. There is a large body of research on
harnessing dark silicon or maximizing performance under
power constraints [1], [2], [4], [5]. Cost and environmental
reasons are other motivations to govern energy-efficient and
low power design. As a consequence, hardware design com-
panies have considered energy efficiency as one of the main
design concerns and have provided mechanisms to ease
developing green applications. Intel provides RAPL interface
which enables the software developers to measure and con-
trol the power consumption at different domain, including

core, package, DRAM and embedded graphic [6]. ARM has
introduced big.LITTLE technology, which allows migrating
applications between simple and complex cores based on
workload demands. IBM has employed low power little cores
in BlueGene/Q to increase power efficiency [7]. As it is
evident by these latest developments, the paradigm shift has
been occurring from the performance centric to energy-
efficient centric designmethodologies in the industry.

The energy demand of data centers that support MapRe-
duce model is increasing rapidly [8], [9], which is the main
obstacle for their scalability. Moreover, since energy con-
sumption in data centers contributes to major financial bur-
den [10] and prolongs break-even point (when a data center
makes a profit), designing energy-efficient data centers is
becoming very important [23]. Current server designs,
based on commodity high-performance processors are not
an efficient way to deliver green computing in terms of per-
formance/watt. Therefore, the embedded processors that
are designed and developed based on energy efficiency
metrics are finding their way in server architectures [3].
Microservers employ embedded low power processors as
the main processing unit. These platforms are shown to be a
promising solution to enhance energy-efficiency and reduce
cost in data centers. They follow the System-on-Chip (SoC)
approach to render the CPU, I/O and networking compo-
nents fully integrated onto a single chip.

Several companies and academics have developed clus-
ter architectures based on ARM or Intel Atom cores. An
example is FAWN (Fast Array of WimpyNodes) [11], which
composed of a large number of embedded and efficient Intel
Atom cores where each core is low power dissipating only a

! M. Malik, K. Neshatpour, and H. Houmayoun are with the Department of
ECE, GeorgeMasonUniversity, Fairfax, VA 22030.
E-mail: {mmalik9, hhomayou}@gmu.edu, katayoun.neshatpour@gmail.com.

! S. Rafatirad is with the Department of IST, George Mason University,
Fairfax, VA 22030. E-mail: srafatir@gmu.edu.

Manuscript received 20 Mar. 2017; revised 19 July 2017; accepted 17 Aug.
2017. Date of publication 5 Sept. 2017; date of current version 14 Sept. 2018.
(Corresponding author: Maria Malik.)
Recommended for acceptance by N. Jha.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TMSCS.2017.2749228

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018 355

2332-7766! 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8425-2501
https://orcid.org/0000-0001-8425-2501
https://orcid.org/0000-0001-8425-2501
https://orcid.org/0000-0001-8425-2501
https://orcid.org/0000-0001-8425-2501
https://orcid.org/0000-0002-0094-316X
https://orcid.org/0000-0002-0094-316X
https://orcid.org/0000-0002-0094-316X
https://orcid.org/0000-0002-0094-316X
https://orcid.org/0000-0002-0094-316X
mailto:
mailto:
mailto:

few watts of power. X-Gene platform [12] developed by
Applied Micro is another example of a server-class SoC
which is designed for cloud and enterprise servers based on
ARM v8 64-bit core architecture. HP low-power Moonshot
servers [13] also uses ARM and Atom embedded cores on a
single rack. Due to the wide adoption of x86-based architec-
tures in servers, in this paper we choose Atom to study, as it
has a low power embedded micro-architecture with high-
performance x86 ISA.

The world of big data is changing constantly and pro-
ducing a large amount of data that creates challenges to
process them using existing solutions. Big data applica-
tions heavily rely on deep machine learning and data min-
ing algorithms, running complex database software stack
with significant interaction with I/O and OS [43]. The
Apache Hadoop framework, a defacto standard for analyt-
ics, assists the processing of large datasets in a distributed
computing environment. Numerous big data applications
rely on using the Hadoop MapReduce framework to per-
form their analysis on large-scale datasets. Several research
works have reported the performance analysis of Hadoop
MapReduce applications on high performance servers such
as Xeon [14], [15]. However, the important research ques-
tion is whether low-power embedded architectures are
suited to process big data and in particular MapReduce
applications efficiently. To understand this, in a recent
work [16], we evaluated big data applications on two dis-
tinct server architectures; high-performance Xeon server
and low-power embedded Atom server. Our results dem-
onstrate that while big Xeon core provides high perfor-
mance and more energy-efficiency for traditional CPU
applications compared to little core, it is not power effi-
cient to process big data applications. The results further
show that the little core is more energy-efficient than big
core in almost all studied applications, and in particular
for compute-intensive applications. Overall, low power
embedded architectures can provide significant energy-
efficiency for processing big data analytics applications
compared to conventional big high performance core.

There have been several works on characterizing
Hadoop MapReduce applications [17], [18], [19], [20], or
optimizing them for performance or power [15], [21]. Most
of these works either mainly focus on performance optimi-
zation [22], ignoring energy-efficiency, or mainly deployed
on high performance big Xeon core. In addition, given that
the performance and power of Hadoop MapReduce appli-
cations is sensitive to various tuning parameters at applica-
tion (application type, data size per node), system (HDFS
block size, number of mappers running simultaneously per
microserver node) and architecture levels (operating volt-
age and frequency of core), it is important to understand
the role of these parameters and the interplay among them
for energy-efficiency optimizations. While prior work
mainly ignored the interplay among these tuning parame-
ters, in this work we characterize Hadoop applications
across a wide range of tuning parameters to understand the
interplay effect and accordingly the optimization opportu-
nities on microservers for enhancing their energy efficiency.

Contributions. To the best of our knowledge this is the first
paper that comprehensively analyzes the behavior of the
emerging big data applications running in Hadoop MapRe-
duce environment onmicroserver with respect to various sys-
tem, application and architecture levels tuning parameters
and the interplay among them. This analysis will assist

guiding the scheduling decisions and help optimizing for
performance, power and energy-efficiency improvements.
Grounded in empirical analysis, ourmain contributions are:

! We analyze the impact of various tuning parameters
at system-level (number of mappers running simul-
taneously per microserver node, HDFS block size),
application-level (application type and input data
size) and architectural-level (operating voltage and
frequency) on the performance, power and energy
efficiency for various Hadoop micro-benchmarks
and real-world applications.

! We analyze how the interplay of various tuning
parameters at application, system, and architecture
levels affects the power and performance sensitivity
of the Big data applications.

! We analyze the execution time breakdown of various
phases of Hadoop micro-benchmarks. To guide
power optimization using frequency scaling, we fur-
ther analyze how the performance of these phases is
sensitive to the operating frequency.

! We evaluate real time system resources measure-
ment including CPU utilization and memory
footprint to understand the runtime behavior and
resource consumption of Hadoop micro-benchmarks
when varying system, architecture and application
level tuning parameters.

Consequently, we make the following major observation:

! The speedup obtained when increasing the number of
available cores on microserver node outweighs the
power overhead associatedwith increasing the number
of cores. This indicates that utilizing the maximum
number of available cores per node achieves the best
energy-efficiency across all studied applications.

! While utilizing all available cores on each microserver
node provides the maximum energy-efficiency across
all studied applications, concurrent fine-tuning of fre-
quency and HDFS block size reduces the reliance on
themaximumnumber of cores.We can achieve a com-
petitive energy-efficiency with fewer number of cores
compared to the maximum number of cores by
simultaneously fine tuning the HDFS block size and
the operating frequency of the system. This helps
freeing up cores on each node to accommodate
scheduling co-runner applications in a cluster com-
puting environment.

! Hadoop I/O bound applications can be scheduled at
lower processor operating frequency on microserver
to save power. Performance loss can be compensated
to a significant extent by increasing the number of
mappers, and therefore the number of cores, with a
small impact on total power consumption.

2 HADOOP FRAMEWORK AND TUNING
PARAMETERS

Apache Hadoop is an open-source Java-based framework of
MapReduce implementation. It assists the processing of
large datasets in a distributed computing environment and
stores data in highly fault-tolerant distributed file system,
HDFS. Fig. 1 shows a simple conceptual view of steps
involve in HadoopMapReduce. When an application is sub-
mitted for scheduling, Hadoop splits its input data into a

356 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

fixed data blocks where each block is assigned to a map task.
A map task transforms the input data into intermediate key-
value pairs. These generated intermediate values are trans-
ferred from the mappers to the appropriate reducers in the
merge stage. Shuffle and sort of key-values are done in this
stage. As different subset of intermediate key-value pairs are
assigned to each reducer, the reducers consolidate data into
the final output. There are a number of parameters that
directly impact the MapReduce application performance
and energy-efficiency. In this work, we study various param-
eters including the number of mappers, operating voltage
and frequency of the core, HDFS block size, and the size of
data per node that can be tuned by the user, scheduler or the
system and are impacting the energy-efficiency.

2.1 Application Diversity
Hadoop cluster hosts a variety of big data applications run-
ning concurrently.We have included fourmicro-benchmarks
in our study, namely WordCount-WC, Sort-ST, Grep-GP and
TeraSort-TS. We have selected these micro-benchmarks as
they are kernels in many big data applications representing
diverse behavior [19]. Thesemicro-benchmarks stress-test dif-
ferent aspects of a microserver cluster [19]. We have also
included two real-world applications namely Na€ıve Bayes
-NB and Collaborative Recommendation Filtering-CF) in our
study by incorporating mahout library [42]. Table 1 shows
Hadoop micro-bench-marks and real-world applications for
this study alongwith their particular domain and data type.

2.2 Interdependent Tuning Parameters
We have studied the impact of the system, application, and
architectural level performance and power tuning parameters
including the HDFS block size (32, 128, 256, 512, 1024 MB),
input data size of the application (10, 100 MB, 1, 10, 25 and
50 GB), number of mappers that run simultaneously on a

single node (1, 2, 4 and 8), and frequency settings (1.2, 1.6, 2.0,
2.4 GHz) to evaluate how these parameters affect energy
efficiency of big data applications on microserver. Moreover,
we thoroughly analyze the impact of these parameters on
memory system and processor utilization.

3 MEASUREMENT AND METHODOLOGY

The methodology in which our experiments are conducted
is presented in Fig. 2. Our methodology is divided into three
major steps.

3.1 Hardware/Software Infrastructure
We conduct our study on Intel Atom C2758 server that has 8
processing cores per node and two levels of cache hierarchy
shown in Table 2. The operating system is Ubuntu 13.10
with Linux kernel 3.11. All experiments are performed on
eight-node Atom server with Hadoop 1.2.1. It is important
to note that while network overhead in general is influencing
the performance of studied applications and therefore the
characterization results, for big data applications, as shown
in a recent work [24], a modern high speed network introdu-
ces only a small 2 percent performance overhead. We there-
fore used a high speed 1 Gbit/s network to avoid making it a
performance bottleneck. For this study we have selected
parameters that are tunable at user, scheduler, application or
system levels [41]. There could be certainly more parameters
for performance and power tuning, however, this paper
attempts to provide an in-depth understanding of how con-
current tuning of these highly accessible and easy tunable
parameters at various levels can significantly impact the per-
formance and energy efficiency.

Fig. 1. A simple conceptual view of the Hadoop data flow.

TABLE 1
Studied Hadoop Applications

Type of Benchmark Application Domain Workloads Data Source Software Stacks

Micro
Benchmark

I/O - CPU testing
micro program

WordCount (WC) Text
Hadoop 1.2.1Sort (ST) Table

Grep (GP) Text
TeraSort (TS) Table

Real world
Application

Social Network Collaborative Filtering (CF)
Text

Hadoop 1.2.1,
Mahout 0.6E-commerce Classification (NB)

Fig. 2. Methodology.

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 357

3.2 Measurement
We use Perf [39] to capture the performance characteristics of
the studied applications. Perf is a Linux profiler tool that
records hardware performance counters data. Perf exploits
PerformanceMonitoring Unit (PMU) in the processor tomea-
sure performance as well as other hardware events at turn-
time. For measuring power consumption, Wattsup PRO
power meter [40] measures and records power consumption
at one second granularity. The power reading is for the entire
system, including core, cache, main memory, hard disks and
on-chip communication buses. We have collected the average
power consumption of the studied applications and sub-
tracted the system idle power to estimate the power dissipa-
tion of the core. The same methodology is used in [25], for
power and energy analysis. Idle power is measured using
Watts up power meter when the server is not running any
application and is in the idle state (note that most of power
consumption of the off-chip memory subsystems are due to
leakage). Dstat [26] is used for main memory, disk and CPU
utilization analysis. Dstat is a system-monitoring tool, which
collects various statistics of the system.

3.3 Results Analysis
The resource utilizations including CPU utilization and
memory footprint are saved at run-time in CSV file and then

processed by R, an environment for statistical analysis. Map-
Reduce execution breakdown, including setup, map, reduce
and clean up phases is obtained through parsing the log files
of Hadoop framework. The main analysis of this work
includes performance, EDP, MapReduce execution time
breakdown, CPU utilization andmainmemory footprint.

4 ENERGY EFFICIENCY ANALYSIS ON XEON

VERSUS ATOM

In this section, we present energy efficiency analysis of the
studied applications when changing the frequency on two
very distinct microarchitectures; Intel Xeon- conventional
approach to design a high-performance server and Intel
Atom- microserver that advocates the use of a low-power
core. Figs. 3 and 4 show the EDP results on Atom and Xeon.
For each workload, the EDP values are normalized to the
EDP result on Atom at the lowest frequency of 1.2 GHz and
with 512 MB HDFS block size. The low power characteris-
tics of the Atom results in a lower EDP on Atom compared
to Xeon for most applications with the exception of the Sort.
This is due to the fact that the performance gap (in terms of
execution time) for the I/O bound benchmarks is very large
between Atom and Xeon. Since EDP is the function of the
execution time and power, the total EDP on Xeon is lower
for the Sort benchmark. In addition, the results show that
increase in the frequency reduces the total EDP. While
increasing the frequency increases the power consumption,
it reduces the execution time of the application and conse-
quently the total EDP.

In addition, we carry out a sensitivity analysis of EDP
ratio of the applications on Xeon to Atom. Fig. 4 presents
the EDP change with respect to the HDFS block size for a
frequency of 1.8 GHz. The results show that increasing
HDFS block size increase the EDP gap between Atom and

TABLE 2
Experimental Microserver Platform

Hardware Type Parameter Value

Motherboard Model Super micro
A1SRM-2758F

CPU

("BW ¼ Bandwidth)

Model Intel Atom C2758

Core 8
Hyper-Threading No
Base Frequency 1.9 GHz
Turbo Frequency No

TDP 20 W
L1 Cache 24 KB
L2 Cache 4 * 1024 KB

Memory Type DDR3 1600 MHz
Max. Memory BW* 25.6 GB/s

Max. Memory
Channels

Dual Channel

Disk (HDD)

Model Seagate ST1000DM003-1CH1
Capacity 1000 GB
Speed 7200 RPM

Network Interface

Card

Model ST1000SPEXD4
Speed 1000 Mbps

Fig. 3. EDP analysis of Hadoop applications on Xeon and Atom with frequency scaling.

Fig. 4. EDP ratio of Hadoop applications on Xeon to Atom at various
HDFS block sizes.

358 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

Xeon. Since in Atom, the performance bottleneck exists in
the memory subsystem, improving memory subsystem
performance by increasing HDFS block size enhances its
performance more significantly compared to Xeon, and
reduces the performance gap between the two architectures.

Overall, Atom has shown to be significantly more sensi-
tive to tuning parameters. Therefore, the performance gap
between the two architectures can be reduced significantly
through fine-tuning of the system and architectural parame-
ters on Atom, allowing maximum energy efficiency.

5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we discuss the power and performance
characteristics of Hadoop micro-benchmarks and real-
world applications on Atom microserver with respect to the
Hadoop configuration parameters.

5.1 Execution Time Analysis
Fig. 5 (represented as a bar graph) shows the execution time
of the studied Hadoop applications with respect to the num-
ber of mapper slots (cores), HDFS block size and operating

Fig. 5. (a) Execution Time and EDP of WordCount with various mappers, HDFS block size and operating frequencies. (b) Execution Time and EDP of
Sort with various mappers, HDFS block size and operating frequencies. (c) Execution Time and EDP of Grep with various mappers, HDFS block size
and operating frequencies. (d) Execution Time and EDP of Terasort with various mappers, HDFS block size and operating frequencies.

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 359

frequency with the fixed input data size of 10 GB per node
for Hadoop micro-benchmarks and real-world applications,
respectively For instance, 10 GB input data size per node
presents 80 GB input data size processed by application in
an 8-node cluster. Hadoop exploits cluster-level infrastruc-
ture with many nodes for processing big data applications,
however, the experimental data should be collected at the
node level to understand how various optimizations and
scheduling decisions affects the performance, architectural
parameters and energy-efficiency at the node level. Across
almost all studied applications, the HDFS block size of
32 MB has the highest execution time. Small HDFS block size
generates large number of map tasks ½number of map task ¼
Input data size=HDFS block size% that increases the interac-
tion between master and slave node. The performance
improves significantly with the increase in the HDFS block
size. This behavior is consistent across all studied applica-
tions when the number of mapper slots is less than 4. With
few number of mapper slots (Mapper 2 andMapper 1), large
HDFS block size generates adequate number of map task to
keep all mapper slots (cores) in the system busy and reduces
the interaction between master and slave node. On the other
hand, medium HDFS block size of 256 MB and 512 MB are
more preferable for large number of mapper slots (cores) as
it generates more number of map tasks to run simulta-
neously with a fast execution time per map task. In contrast
to Sort, other applications such as WordCount, Grep, and
Terasort show a parabolic behavior at large number of map-
per slots/cores and achieve the minimum execution time at
256 or 512 MB HDFS block size. Sort optimal HDFS block
size is 1,024 MB whereas WordCount optimal block size is
256 MB with the maximum number of mappers’ slots/cores.
Similar to recent work [19], we observe that Terasort shows
hybrid characteristics. Map phase of Terasort is CPU-bound

and Reduce phase is I/O-bound, therefore unlike Sort,
Terasort optimal HDFS block size is 512MB.Moreover, Grep
also illustrates hybrid characteristics with a 512 MB optimal
HDFS block size. Grep consists of two separate phases;
search phase and sort phase running in sequence. Search
phase is compute-bound that counts how many times a
matching string occurs and sort phase is I/O-bound that
matches strings with respect to their frequency.

The parabolic behavior ofWordCount, Grep, and Terasort
with respect to HDFS block size can be explained as follows:
Small HDFS block size introduces a large number of map
tasks that generates more interaction between master and
slave nodes. These interactions are necessary to request the
HDFS block location information. On the other hand, large
HDFS block size reduces the slave node interaction with the
master node. Additionally, with a large block size, small
metadata is required to be stored on themaster node that can
be placed in the memory which is faster to access. Con-
versely, storing large chunk size of data on a node can create
performance bottleneck if the application requires accessing
the same data recursively. This explains the parabolic behav-
ior in the compute-bound and hybrid applications.

In addition, we have studied the impact of CPU operat-
ing frequency to understand how Hadoop applications are
sensitive to processor frequency scaling. The results show
that Sort application is least sensitive to the frequency, com-
pared to other applications. For this application when CPU
frequency is reduced to half, the performance only drops by
20 percent. Sort is an I/O bound benchmark, which spends
most of the execution time requesting data and waiting for
I/O operations to complete.

Fig. 6 (bar graph) presents the execution time of the studied
real-world applications for 1, 2, 4 and 8 number of mapper
slots. Based on the micro-benchmark results, we run the

Fig. 6. (a) Execution Time and EDP of NB with various mappers, HDFS block size and operating frequencies. (b) Execution Time and EDP of CF with
various mappers, HDFS block size and operating frequencies.

360 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

real-world applications with the HDFS block size of 64 MB-
1024 MB as 32 MB HDFS block size has the maximum execu-
tion time. Similar to micro-benchmarks, CF and NB applica-
tions have shown significant reduction in the execution time
when changing the HDFS block size and number of mappers.
The optimal HDFS block size for CF and NB is 256 MB.
Both of these applications are compute-bound applications as
theyhave a higher CPUutilization compared to the traditional
CPU and parallel benchmarks [16]. Additionally, by increas-
ing the frequency from 1.2 GHz to 2.4 GHz, we observe a 34.4-
56.6 percent and 54.4-61.1 percent reduction in the execution
time at themaximumnumber of mappers with the increase in
theHDFS block size in CF andNB, respectively.

Although, the optimalHDFS block size for the peak perfor-
mance is closely decided by the application type, extensive
experimental search to determine the best HDFS size can be
avoided by assigning 256 MB block size for compute-bound
and 1024MB for I/O- bound applications as an optimal choice
to get close to themaximum achievable performance.

5.2 Energy-Efficiency Analysis
EDP is a fair metric to compare various architectures, or even
the impact of changing optimization knobs in an architecture.
EDP (or PxDxD) represents a trade-off between power and
performance. Without EDP and just using energy metric for
comparison, we can simply reduce the voltage and frequency
in an architecture, and reduce its energy, however at a cost of
lowering the performance (increased execution time). There-
fore, performance along with energy is important to find out
the impact of optimization parameters. Therefore, In order to
characterize the energy efficiency, we evaluate Energy Delay
Product (EDP) metric to investigate trade-off between power
and performancewhen tuningHadoop and processor param-
eters, as shown in Fig. 5 (represented as line graph).
We observe that the increase in the number of mappers run-
ning simultaneously equal to the number of available cores,
minimizes the EDP. Worst EDP is reported with one mapper,
while 8 mappers give the best EDP by effectively utilizing all
available cores. The margin of EDP improvement becomes
smallerwith the increase in the number ofmappers.

The general observation is that the optimal energy
efficiency is achieved when we utilize all available cores. In
other words, the performance improvement achieved by
adding more cores outweighs the power overhead associate
with additional cores. However, the important observation
is that we can reduce the reliance on the maximum number
of available cores by fine-tuning the system and architecture
parameters (discussed later in detail). In Section 5.4, we
present the speedup improvement of each benchmark
when increasing the number of mappers. The EDP trend
is consistent with the execution time trend showing that
in I/O-bound applications, the maximum energy efficiency
is achieved with the largest HDFS block size, however
compute-bound and hybrid applications achieve optimal
EDP at 256 and 512 MB, respectively. Moreover, we have
conducted the analyses of frequency scaling on the EDP
results. Energy efficiency is maximized at the highest fre-
quency of 2.4 GHz in all the studied appli-cations with an
exception of Sort. Sort operating at a frequency of 1.6 GHz
provides the maximum energy efficiency as opposed to 2.4
GHz frequency. As discussed earlier, Sort is an I/O bound
application that spends a significant amount of execution
time reading data from and writing to HDFS. This behavior

makes the performance of Sort almost insensitive to the
operating frequency.

As mentioned earlier the interesting observation is
regarding the tuning of the HDFS block size and frequency
for various number of mappers. The results show that by
simultaneously fine-tuning the HDFS block size and operat-
ing frequency, we can reduce the number of mappers and
yet be as energy-efficient as with the maximum number
of mappers. For example, Grep of 512 MB block size and
2.4 GHz frequency with 2 and 4 mappers achieves higher or
similar energy-efficiency compared to the maximum num-
ber of mappers. This indicates that in the absence of avail-
able cores, for instance due to co-scheduling of other jobs on
the server, with fewer mapper we can fine-tune frequency
and HDFS block size and still be energy-efficient competi-
tive with more number of cores/mappers.

There are severalworks that attempt to findwhich applica-
tions should co-schedule simultaneously on a CMP on high
performance servers. [27] proposes a methodology to build
models that predicts application execution time and energy
consumption due to contention in shared cache and memory
resources when co-located applications run simultaneously
on the same node. Thiswork analyzes the co-location interfer-
ence effects on execution time and energy dissipation caused
by resources shared among the cores in a multicore processor
for the HPC application simulated on the high-performance
server, Xeon. [28] proposes the energy-aware thread-to-core
scheduling policy for heterogeneous multicore processor.
This study attempts to spread the shared resources contention
uniformly across available cores by predicting the future
thread behavior from the study of memory and performance
demands of individual threads to maximize the energy effi-
ciency. Bubble-up [29], a characterization and profiling meth-
odology, predicts the performance degradation between
pairwise application co-locations.

It is also important to note that most prior research
showed promising results by co-scheduling applications,
however, using SPEC and HPC applications on the high-
performance servers. Our work targets microservers and
highlights the fact that Hadoop-based big data applications
can also be co-scheduled onto one node by concurrent fine-
tuning of frequency and HDFS block size and still remain as
energy-efficient as using maximum number of cores.

Fig. 6 (line graph) presents the EDP analysis of the real-
world applications when utilizing 1, 2, 4 and 8 cores (num-
ber of mappers). We have analyzed the effect of the HDFS
block size and frequency scaling on the EDP. The results
show that the most energy-efficient HDFS block size for
compute bound applications - CF and NB is 256 MB. The
trend for these two real-world applications is similar to
what we have already observed in micro-benchmarks
where optimal HDFS block size for the compute bound
applications is 256 MB. Additionally, CF and NB provide
the best EDP at the maximum frequency. The margin of
EDP improvement becomes smaller with the increase in the
HDFS block size at the maximum frequency.

5.3 MapReduce Phase Breakdown Analysis
There are several tasks involved in an end-to-end Hadoop
MapReduce environment. The main tasks are map, reduce,
shuffle, sort, setup and clean up. The first phase is the map
that executes the user defined map tasks on the entire input
data. During this phase, the input data is divided into fixed-

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 361

size blocks called splits and is converted into the <key,
value> format. In the second phase, all <key, value> pairs
of a particular key are sent to a single reduce task. To do so,
shuffling is done to transfer intermediate data frommappers
to the reducers. Shuffle phase starts shortly after the first
map finishes, and does not complete until all the map tasks
are done. Later on, sort phase occurs that sort<key, values>
pairs to provide the correct form of mappers to the reducers.
Sort phase finishes after the shuffle phase ends. Setup and
cleanup are other major phases of big data processing in
Hadoop. The setup reads parameters from the configuration
object and does all the bookkeeping before the map task exe-
cution starts. The setup time of JVM is included in the setup
phase of MapReduce application. Map and Reduce phases
are the computational intensive portion of the application.
The cleanup frees all of the resources that have allocated dur-
ing execution and flush out any intermediate variable.

In Fig. 7, we present the normalized execution break-down
of MapReduce phases for the studied micro-benchmarks
when we change frequency for 512 MB HDFS block size
and eight mappers. Note that for Sort benchmark, there is
no reduce task. For Grep benchmark, which includes two
separate phases (i.e., searching and then sorting the
results), the setup and cleanup contribute to a significant
portion of execution time.

Phase analysis is essential to profiling and characterizing
the application behavior. In Fig. 8, we have analyzed the per-
formance of various phases of MapReduce application to
analyze the frequency impact on various phases of MapRe-
duce application, while tuning parameters at the applica-
tion, system, and architecture levels. Our results show that
reduce phase of Grep and Map phase of the sort applica-
tion are less sensitive to the frequency as these phases are
I/O intensive in nature. Therefore, running these phases
at lower frequencies provides significant opportunity for
reducing the power consumption with a negligible perfor-
mance degradation.

In Fig. 8, we illustrate the impact of frequency scaling on
each phase of Hadoop MapReduce normalized to its corre-
sponding phase running at minimum frequency, namely
1.2 GHz. The trend of decreasing in execution time as the
operating CPU frequency increases is consistent with
the results in Fig. 5. Fig. 8 shows that setup and cleanup
phase of micro-benchmarks are frequency sensitive. Since
the computation intensive part of the micro-benchmarks
lies on the map and reduce phase, it is critical to understand
how sensitive they are to frequency scaling. Having no
reduce phase, Sort application spends most of its execution
time in the map phase. Interestingly, map phase in Sort is
insensitive to the operating frequency as this phase spends
a significant amount of execution time reading data to and
from the HDFS. One can execute such phase at a lower fre-
quency to save power. Another observation is regarding
Grep reduce phase which shown to be less sensitive to the
frequency. This is due to the fact that Grep benchmark con-
sists of two independent steps that are Grep searching and
Grep Sorting, the latter step is I/O bound. Consequently,
unlike WordCount and TeraSort, the reduce phase of Grep
exhibits a different behavior; reducing the CPU frequency
by half, from 2.4 to 1.2 GHz only results in an 18 percent
reduction in the execution time, therefore, providing signifi-
cant opportunity for reducing power consumption.

5.4 Speedup
In this section, we analyze performance improvement as the
number of mappers increase with 32 and 512 MB HDFS
block size. The results are presented in Figs. 9a and 9b. All
the values are normalized to the execution time of the

Fig. 7. MapReduce normalized execution time breakdown.

Fig. 8. MapReduce Phases normalized execution time to minimum frequency at various frequencies.

362 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

application with one mapper. At the maximum frequency,
the speedup of 6.40, 5.76, 4.28 and 3.98 is achieved for Sort,
WordCount, Grep and TeraSort, respectively. As Fig. 9b
shows, the increase in the HDFS block size reduces the
speedup gains (2.18, 2.2, 1.71 and 2.82, respectively). It is
important to observe that TeraSort benchmark attain more
speedup gain at 512 MB than 32 MB of HDFS block size. In
other words, tuning the HDFS block size not only changes
the execution time but also affects the speedup gain of big
data applications, as the number of mappers’ increases.

We also evaluate how the frequency scaling affects the
speedup achieved for the studied benchmarks. Fig. 10 shows
that when the frequency is reduced from 2.4 GHz to 1.2 GHz,
the speedup gain increases. For example, when the frequency
reduces to the minimum, the speedup achieved in Fig. 9a is
increased to 7.55, 6.32, 4.70 and 4.47, respectively. The
speedup improvement is more when the HDFS block size is
larger. In other words, when the application is operating at a
lower frequency to save power, we can compensate the per-
formance loss to some extend by increasing the number of
mappers. This is the case, in particular for Sort benchmark, as
at the minimum frequency the speed up improvement is
almost 50 percent compared to the maximum frequency for
512 MB HDFS block size. Consequently, the most efficient
configuration for this benchmark is with 8 mappers, 1.6 GHz
frequency and largeHDFS block size as it is shown in Fig. 5b.

5.5 Input Data Size Sensitivity Analysis
In this section, we study the impact of input data size on
power and performance. We conduct the data sensitivity
analysis of Hadoop applications with the dataset of 10 MB,

100 MB, 1 GB, 10 GB, 25 GB and 50 GB per node. In a distrib-
uted framework like Hadoop, the input data is divided into
data block and assigned to each node. Although Hadoop
exploits cluster-level infrastructure with many nodes for
processing big data applications, to understand the impact of
various parameters and how their interplay impacts EDP,
single node characteristics analysis is required. The number
of mappers is fixed at 8 with the default HDFS block size
(64 MB) and governor is set as on-demand. The results show
that the execution time is proportional to the input data size.
Power consumption also increases slightly as the size of input
data increases. However, the power and performance sensi-
tivity to the input data size is different across various applica-
tions. The execution time and power results are shown in
Figs. 11a and 11b, respectively. WordCount, which is a com-
pute bound benchmark is less sensitive to the input data size,
whereas, Sort execution time is shown to be highly affected
by the input data size. With 10 MB and 100 MB input size
there is not a significant variation in power consumption
across all bench-marks, however, with larger data sizes the
power consumption varies more noticeably and suddenly
increases. For Sort, the power consumption ismore than other
studied benchmarks when the input data size is small (i.e.,
10 MB and 1000 MB). However, when the input size is large
(i.e., 25 GB and 50GB) the power consumption ofWordCount
andGrep becomes larger than Sort.

5.6 System Resources Profiling and Utilization
In this section, we present the real time system resources
profiling (CPU utilization and memory footprint) to under-
stand the runtime behavior and resource utilizations of
Hadoop micro-benchmarks. Real-world applications have
not been included in the system resource utilization study,
as we have observed that they have similar behavior as
compute-bound micro-benchmarks. In this set of experi-
ments, we study the following parameters: number of map-
pers (1 and 8), HDFS black size (32 MB and 512 MB) and
operating frequency (1.2 GHz and 2.4 GHz).

5.6.1 CPU Utilization Analysis

Table 3 presents CPU utilization of Hadoop micro-bench-
marks that include overall CPUuser, CPUidle and CPUio-
wait utilization. We use the dstat profiling tool that
classifies CPU utilization into different types including
user, idle, wait, system, hardware interrupt and software
interrupt. To evaluate the CPU utilization of an application

Fig. 9. (a) Speed up with 32 MB HDFS block size at maximum frequency 2.4 GHz. (b) Speed up with 512 MB HDFS block size at maximum frequency
2.4 GHz.

Fig. 10. Maximum speed up improvement when cores operates at the
minimum frequency normalized to the performance at maximum
frequency.

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 363

under test, we have selected user, idle and wait parameters.
CPUuser utilization present the amount of time when the
core is busy working on the user application and is not idle
(CPUidle utilization) or stalled due to I/O (CPUiowait utili-
zation). The CPU utilization trace is generated per second
and the reported values are the average utilization of all
cores over the total execution time.

CPUuser utilization decreases when the number of map-
pers increases. In the I/O bound application-Sort- CPU
spends most of its execution time waiting for IO request.
We have observed a similar trend in Table 3 where Sort has
low CPUuser utilization and high CPUiowait readings com-
pared to other applications. InWordCount, withHDFS block
size of 32 MB, the average CPUuser utilization decreases to
60 percent. However, with 512 MB HDFS block size the utili-
zation reduces to 28 percent. (CPUidle is 70 percent). This is
mainly due to the fact that large HDFS block size is under-
utilizing the number of active cores.

To illustrate the benchmark behavior, we have presented
the timeline based CPUuser utilization of WordCount and
Sort benchmark with respect to the number of mappers and
the HDFS block size in Figs. 12a and 12b and 13a and 13b,
respectively. In WordCount, as the HDFS block size
increases from 32 MB to 512 MB, the traces show a stable
CPUuser utilization averaged at 60 percent and 25 percent
with an exception that 32 MB finishes earlier than the
512 MB. In contrast, CPUuser utilization reaches to almost
96 percent on average with single mapper (see Fig. 12b). Sort
benchmark also shows a similar trend. However, for this
benchmark, the execution time with 512 MB is less than
32 MB HDFS block size. The average CPUuser utilization for
Sort with maximum block size is only 19 percent. Moreover,
this benchmark shows large variation in the CPUuser utiliza-
tion and stays below 15 percent for a considerable amount of
time. The WordCount benchmark with one mapper almost
keeps the CPU busy for nearly the entire duration of the
application. Given that WordCount extracts a small amount
of data from a large set of data, its job output is much smaller
than the job input. Consequently, the WordCount is CPU
bound having high average CPU utilizations.

Increasing the operating frequency results in a slight
reduction in the CPU utilization except for WordCount,
which is more compute bound benchmark compared to
others. Moreover, changing the block size almost does not
change the utilization with a single mapper, however, it
leads to considerable CPU utilization reduction when the
number of mappers increases. This behavior exhibits that
all cores are not actively working most of the time with the
largest HDFS block size. The underutilized cores are wait-
ing for I/O, being synchronized with other cores or waiting
until the results of other cores produced.

It is noteworthy that when the number of mappers
increases, the average CPUuser utilization reduces from 73-
96 percent to 19-60 percent with respect to the HDFS block
size. To explain this behavior, we have analyzed the
resource stalls introduced at the back-end of processor pipe-
line using Intel Vtune [30]. The back-end contains record
buffer (ROB) and reservation stations (RS). When the ROB
or RS becomes full, the back-end stalls and does not accept
any new instruction. We have observed that with the
increase in the number of mappers, ROB stalls do not
change significantly, however, the RS stalls increase from
0.2 to 15 percent. RS stalls occur when processor is waiting
for inputs and resources to be available. This behavior illus-
trates that with the increase in the number of mappers,
shared resources in the memory hierarchy including the

Fig. 11. (a) Execution time of Hadoop micro-benchmarks with various data sizes. (b) Power of Hadoop micro-benchmarks with various data sizes.

TABLE 3
CPU Utilization (%)

WC ST GP TS

m1_32 MB_F1.2
user 96.29 93.52 93.16 89.92
Idle 0.30 0.02 1.43 0.08

iowait 0.04 0.00 0.07 0.56

m1_512 MB_F1.2
user 96.54 81.40 88.96 86.17
Idle 0.57 0.05 3.81 0.85

iowait 0.02 0.48 0.13 0.70

m8_32 MB_F1.2
user 61.38 66.16 56.64 47.23
Idle 36.70 17.56 40.48 47.56

iowait 0.18 1.48 0.22 0.81

m8_512 MB_F1.2
user 28.12 33.95 23.11 34.21
Idle 70.80 34.13 74.08 59.55

iowait 0.37 22.99 0.80 1.44

m1_32 MB_F2.4
user 96.21 93.52 92.32 88.81
Idle 0.51 0.04 2.27 0.38

iowait 0.08 0 0.08 1.04

m1_512 MB_F2.4
user 95.32 73.44 80.22 85.02
Idle 1.36 0.36 11.05 0.85

iowait 0.78 6.72 1.03 0.97

m8_32 MB_F2.4
user 60.15 63.48 49.97 47.77
Idle 37.68 25.15 46.24 44.83

iowait 0.16 6.7 0.98 2.97

m8_512 MB_F2.4
user 28.3 19.17 19.53 30.38
Idle 70.07 44.08 75.49 60.18

iowait 0.95 31.52 3.09 5.21

364 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

cache, shared memory, and DRAM become the bottlenecks
that results in a low CPUuser utilization. In other words,
most of the time the cores are idle and dissipating leakage
power. Such large idle time motivates employing the
Dynamic Power Management (DPM) techniques [31] for big
data applications when running large number of mappers.
The low core utilization indicates a significant potential to
mitigate leakage power dissipation.

5.6.2 Main Memory Footprint

In this section, we present the analyses of memory footprints
results. Fig. 14a and 14d illustrates how much stress the
memory (in MB) experiences while running the studied
benchmarks. The increase in the number of mappers indi-
cates that multiple cores are processing the benchmark,
which eventually put more stress on the memory subsystem.
We have observed 19 to 120 percent increase in average
memory footprint with the increase in the mappers from one
to eight. Variation in the memory footprint is minor with
changing the frequency. As the HDFS block size varies,
minor changes are observed in the averagememory footprint
for most of the cases with the exception ofWordCount.

6 DISCUSSION

In this section, based on the results and discussions through-
out the paper, the key findings are presented as follows:

! The speedup obtained when increasing the number
of available cores on a microserver node outweighs
the power overhead associated with increasing the
number of cores, making a configuration that uses the
maximum number of available cores per node the
most energy-efficient across all studied applications.

Unlike microservers, for traditional high perfor-
mance server the power consumption increase, as the
number of mappers’ increases, outweighs the perfor-
mance gains. Therefore, microservers introduces a
new trade-offs to process the Big data applications for
maximum energy-efficiency.

! Increasing the number of mappers/cores, improves
performance and reduces the CPU utilization. In all
studied cases using maximum number of cores pro-
duces best results in terms of both performance and
energy-efficiency. It was also observed that if the
number of mappers exceeds available cores, mapper
tasks are buffering which potentially reduces the
performance and impact the energy-efficiency.

! Although utilizing all available cores on each micro-
server node provides maximum energy-efficiency
across all studied applications, concurrent fine-
tuning of frequency and HDFS block size reduces
the reliance on the maximum number of cores, and
instead make a configuration with fewer number
of cores to be energy-efficient competitive with the
maximum number of cores. This helps freeing up
cores on each node to accommodate schedul-
ing incoming applications in a cloud-computing
environment.

! Tuning the block size significantly affects the perfor-
mance and energy-efficiency of the system. I/O
bound Hadoop applications provide the optimal
execution time and EDP with the largest HDFS block
size. Default HDFS block size of 64 MB is not opti-
mal, neither for power nor for the performance.

! The speed up improvement is more when the HDFS
block size is larger. I/O bound applications can run
at a lower frequency to save power. Performance

Fig. 12. (a) CPU utilization trace of WordCount for HDFS block size comparison. (b) CPU utilization trace of Wordcount for number of mappers
comparison.

Fig. 13. (a) CPU utilization trace of Sort for HDFS block size comparison. (b) CPU utilization trace of Sort for number of mappers comparison.

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 365

loss can be compensated to a significant extend by
increasing the number of mappers.

! Increasing the number of mappers and the number
of active cores result in drastic reduction in average
core utilization. In other words, with more number
of mappers most of the times the cores are becoming
idle and dissipate leakage power. This motivates
employing Dynamic Power Management (DPM)
techniques [31] for big data applications when run-
ning large number of mappers.

! Default Hadoop configuration parameters are not
optimal for maximizing the performance and energy-
efficiency. With fine tuning the Hadoop parameters
along with the system configurations, a significant
gain in performance and energy-efficiency can be
achieved.

7 RELATED WORK

Recently, there have been a number of efforts to understand
the behavior of big data and cloud scale applications by
benchmarking and characterizing them, to find out whether
state-of-the-art high performance server platforms are suited
to process them efficiently. The most prominent big data
benchmarks, includes CloudSuite, HiBench, BigDataBench,
LinkBench and CloudRank-D which mainly focus on the
applications’ characterization on high performance servers
[17], [18], [19], [20], [32]. CloudSuite benchmark was
developed for Scaleout cloud workloads. HiBench is a

benchmark suite for Hadoop MapReduce. The BigData-
Bench was released recently and includes online service
and offline analytics for web service applications. Link-
Bench is a real-world database benchmark for social net-
work application. CloudCmp [33] use a systematic
approach to benchmark various components of the cloud
to compare cloud providers. These works analyze the
application characterization of big data applications on the
Hadoop platform, but they do not discuss the Hadoop con-
figuration parameters for energy efficiency.

Many recent works have investigated the energy effi-
ciency in the Hadoop system; Examples are energy-efficient
storage for Hadoop [8], [9], energy aware scheduling of
MapReduce jobs [34] and GreenHadoop [35]. However, the
focus of these works is on the reduction of operating cost of
data centers for energy efficiency. Our study is different as
it focuses on tuning Hadoop parameters to improve the per-
formance and energy efficiency. The impact of Hadoop con-
figuration parameters is discussed briefly in [17] and [36]
but they have not studied the impact of frequency scaling
and its interplay on Hadoop specific parameters such as
HDFS block size and the number of mappers for optimizing
the energy efficiency. [21] has focused on the resource utili-
zation for performance and energy efficiency on Amdahl
blades running Hadoop. However, they have studied only
two applications with default Hadoop configuration param-
eters. Our study illustrates that default Hadoop configura-
tion parameters (like HDFS block size of 64 MB) are not
optimal for maximizing performance and energy efficiency.

Fig. 14. (a) Memory Footprints (MB) of WordCount. (b) Memory Footprints (MB) of Sort. (c) Memory Footprints (MB) of Grep. (d) Memory
Footprints (MB) of TeraSort.

366 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

In [15], authors analyzed the performance and throughput
with the scale-up and scale-out cluster environment to
figure out which cluster configuration is suitable for
Hadoop Mapreduce jobs. Additionally, they have presented
the optimization applied to Hadoop like concurrency, net-
work, memory and reduce-phase optimization on the high
performance server; Xeon. However, this work has not dis-
cussed the power and energy efficiency. [22] presents a
study of a Hadoop cluster for processing big data on ARM
servers. Authors have evaluated three different hardware
configurations to understand the limitations and constraints
of the cluster. The energy usage and total cost of ownership
for MapReduce applications has been analyzed on the Xeon
and ARM big.LITTLE architecture in [37]. They have not
evaluated the impact of the Hadoop configuration parame-
ters for performance and energy efficiency. HDFS block size
is one of the key design parameters and vital to the perfor-
mance and power optimization. Additionally, this works
does not discuss the interplay of system, architectural and
applications parameters nor study the resource profiling
that is essential to understand the runtime behavior and
resource utilization of the Hadoop applications. The work
in [38] is the closest to our work as they conduct a study of
microserver performance for Hadoop applications. How-
ever, their main focus is on the assessment of five different
hardware configuration clusters for performance, energy
dissipation and cost. In contrast, our work explores Hadoop
configuration parameters such as number of mappers,
HDFS block size and data input size as well as a system
parameter (frequency scaling) for the performance and
energy efficiency on microserver.

Our work is different from all above work as it primarily
focuses on various Hadoop configuration parameters that
directly affect the MapReduce job performance, power and
energy efficiency on emerging x86 based low power cores
microservers and help to understand the interplay of the
Hadoop system, architecture and application parameters to
achieve the maximum performance and energy efficiency
improvement.

8 CONCLUSIONS

In this paper, we present a comprehensive analysis of
the impact of Hadoop system configuration parameters, as
well as application and architecture level parameters,
and the interplay among them on performance and energy-
efficiency of various real-world big data applications run-
ning on Atom microserver, a recent trend in server design
which advocates the use of low-power small cores to
address the power and energy-efficiency challenges. We
showed that performance and energy efficiency of big data
applications are highly sensitive to various Hadoop config-
uration parameters, as well as system and architecture
level parameters, demonstrating that the baseline Hadoop
as well as system configurations are not necessarily opti-
mized for a given benchmark and data input size.

Through performance and power measurements and
analysis on Atom microserver, first, we showed that
increasing the number of mappers that run simultaneously
along with increasing the number of active cores help to
maximize energy efficiency. Second, our analysis showed
that the overall energy efficiency is highly decided by the
HDFS block size and is different for each benchmark, dem-
onstrating that the default configuration parameters are not

optimal. Third, we have explored the impact of scaling the
operating frequency of the compute node for the perfor-
mance and energy efficiency. Our results show that big data
applications become less sensitive to frequency with large
number of mappers. Lastly, we conducted the data size sen-
sitivity analysis of Hadoop micro-benchmarks. Results illus-
trate that the performance and power of compute bound
applications are less sensitive to the input data size as
compared to I/O bound applications. The results indicate
that when not all cores are available, for instance due to
co-scheduling of other jobs on the server, with fewer
mapper/cores we still can be as energy-efficient and com-
petitive with a case when maximum cores/mappers are
available by fine-tuning several parameters such as core
frequency and HDFS block size. In addition, the results
showed that increasing the number of mappers/active cores
result in a noticeable reduction of average CPU utilization,
which indicates the potential of using power management
techniques when the number of mappers/available cores is
at maximum.

We believe that the analyses provided in this work and
the trends identified help guiding the scheduling decision
to better utilize microserver resources by jointly tuning the
application, system and architecture level parameters that
influence the performance and energy efficiency.

ACKNOWLEDGMENTS

This work is supported by the US National Science Founda-
tion under grant no. CNS 1526913.

REFERENCES

[1] A. Venkat, et al., “Harnessing ISA diversity: Design of a
heterogeneous-ISA chip multiprocessor,” in Proc. 41st Annu. Int.
Symp. Comput. Archit., 2014, pp. 121–132.

[2] B. Raghunathan, et al., “Cherry-picking: Exploiting process
variations in dark-silicon homogeneous chip multi-processors,” in
Proc. Des. Autom. Test Europe Conf. Exhib., 2013, pp. 39–44.

[3] M. Malik, et al., “Big data on low power cores are low power
embedded processors a good fit for the big data workloads?,” in
Proc. 33rd IEEE Int. Conf. Comput. Des., 2015, pp. 379–382.

[4] M. B. Taylor, “Is dark silicon useful?: Harnessing the four horse-
men of the coming dark silicon apocalypse,” in Proc. 49th ACM/
EDAC/IEEE Des. Autom. Conf., 2012, pp. 1131–1136.

[5] T. S. Muthukaruppan, et al., “Hierarchical power management for
asymmetric multi-core in dark silicon era,” in Proc. 50th Annu.
Des. Autom. Conf., 2013, Art. no. 174.

[6] Intel, Intel 64 and IA-32 Architecture Software Development
Manual, Aug. 2012. [Online]. Available: http://www.intel.com/
content/www/us/en/processors/architectures-software-
developer-manuals.html

[7] P. Boyle, “The bluegene/q supercomputer,” PoS LATTICE2012 20,
2015.

[8] R. T. Kaushik and B. Milind, “Greenhdfs: Towards an energy-con-
serving, storage-efficient, hybrid Hadoop compute cluster,” in
Proc. USENIX Annu. Techn. Conf., vol. 109, p. 34, 2010.

[9] R. T. Kaushik, et al., “Evaluation and analysis of greenhdfs: A self-
adaptive, energy-conserving variant of the Hadoop distributed
file system,” in Proc. IEEE 2nd Int. Conf. Cloud Comput. Technol.
Sci., 2010, pp. 274–287.

[10] L. A. Barroso, et al., The Datacenter As a Computer: An Introduction
to the Design of Warehouse-Scale Machines. San Rafael, CA, USA:
Morgan Claypool Publishers, 2013

[11] V. Vasudevan, et al., “Energy-efficient cluster computing with
FAWN: Workloads and implications,” in Proc. 1st Int. Conf.
Energy-Efficient Comput. Netw., 2010, pp. 195–204.

[12] X-Gene. (2015). [Online]. Available: https://www.apm.com/
products/data-center/x-gene-family/x-gene/

[13] Moonshot System. (2015). [Online]. Available: http://www8.hp.
com/us/en/products/servers/moonshot/

MALIK ETAL.: HADOOPWORKLOADS CHARACTERIZATION FOR PERFORMANCE AND ENERGY EFFICIENCYOPTIMIZATIONS ON... 367

http://dx.doi.org/174
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
https://www.apm.com/products/data-center/x-gene-family/x-gene/
https://www.apm.com/products/data-center/x-gene-family/x-gene/
http://www8.hp.com/us/en/products/servers/moonshot/
http://www8.hp.com/us/en/products/servers/moonshot/

[14] M. Zaharia, et al., “Improving MapReduce performance in Heter
ogeneous environments,” in Proc. 8th USENIX Conf. Operating
Syst. Des. Implementation, 2008, pp. 29–42.

[15] R. Appuswamy, et al., “Scale-up vs Scale-out for Hadoop:
Time to rethink?,” in Proc. 4th Annu. Symp. Cloud Comput., 2013,
Art. no. 20.

[16] M. Malik, et al., “System and architecture level characterization of
big data applications on big and little core server architectures,”
in Proc. IEEE Int. Conf. Big Data, 2015, pp. 85–94.

[17] C. Luo, et al., “Cloudrank-d: Benchmarking and ranking cloud
computing systems for data processing applications,” Frontiers
Comput. Sci., vol. 6, pp. 347–362, 2012.

[18] M. Ferdman, et al., “Clearing the clouds: A study of emerging
scale-out workloads on modern hardware,” in Proc. 7th Int. Conf.
Archit. Support Program. Languages Operating Syst., 2012, pp. 37–48.

[19] S. Huang, et al.,“The HiBench benchmark suite: Characterization
of the MapReduce-based data analysis,” in Proc. ICDE Workshop,
2010, pp. 41–51.

[20] T. G. Armstrong, et al., “LinkBench: A database benchmark based
on the Facebook social graph,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2013, pp. 1185–1196.

[21] D. Zheng, A. Szalay, and A. Terzis, “Hadoop in low-power pro-
cessors,” arXiv preprint arXiv:1408.2284, 2014.

[22] C. Kaewkasi, et al., “A study of big data processing constraints
on a low-power Hadoop cluster,” in Proc. Int. Comput. Sci. Eng.
Conf., 2014, pp. 267–272.

[23] M.Malik, K.Neshatpour, T.Mohsenin,A. Sasan, andH.Homayoun,
“Big vs little core for energy-efficient Hadoop computing,” in Proc.
Conf. Des. Autom. Test Europe, 2016, pp. 1484–1489.

[24] K. Ousterhout, et al., “Making sense of performance in data
analytics frameworks,” in Proc. 12th USENIX Conf. Netw. Syst.
Des. Implementation, 2015, pp. 293–307.

[25] E. Blem, et al., “Power struggles: Revisiting the RISCvs. CISCdebate
on contemporaryARMand x86 architectures,” inProc. IEEE 19th Int.
Symp. High Performance Comput. Archit., 2013, pp. 1–12.

[26] Dstat. (2017). [Online]. Available: http://lintut.com/dstat-linux-
monitoring-tools/

[27] D. Dauwe, et al., “HPC node performance and energy modeling
with the co-location of applications,” J. Supercomputing, vol. 72,
no. 12, pp. 4771–4809, 2016.

[28] R. Nishtala, et al., “Energy-aware thread co-location in heteroge-
neous multicore processors,” in Proc. 11th ACM Int. Conf. Embed-
ded Softw., 2013, Art. no. 21.

[29] J. Mars, et al., “Bubble-up: Increasing utilization in modern ware-
house scale computers via sensible co-locations,” in Proc. 44th
Annu. IEEE/ACM Int. Symp. Microarchitecture, 2011, pp. 248–259.

[30] Intel Vtune, (2016). [Online]. Available: https://software.intel.
com/en-us/intel-vtune-amplifier-xe?language ¼ de

[31] L. Benini, et al., “A survey of design techniques for system-level
dynamic power management,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 8, no. 3, pp. 299–316, Jun. 2000.

[32] W. Gao, et al., “Bigdatabench: A big data benchmark suite from
web search engines,” arXiv preprint arXiv:1307.0320, 2013.

[33] A. Li, et al., “CloudCmp: Comparing public cloud providers,” in
ACM SIGCOMM Conf. Internet Meas., 2010, pp. 1–14.

[34] N. Yigitbasi, et al., “Energy efficient scheduling of MapReduce
workloads on heterogeneous clusters,” in Green Comput. Middle-
ware Proc. 2nd Int. Workshop, 2011, Art. no. 1.

[35] "I. Goiri, et al., “GreenHadoop: Leveraging green energy in
data-processing frameworks,” in Proc. 7th ACM EuroSys, 2012,
pp. 57–70.

[36] Z. Guo, et al., “Investigation of data locality in MapReduce,” in
Proc. 12th IEEE/ACM Int. Symp. Cluster Cloud Grid Comput., 2012,
pp. 419–426.

[37] D. Loghin, et al., “A performance study of big data on small
nodes,” Proc. VLDB Endowment, vol. 8, no. 7, pp. 762–773, 2015.

[38] A. Anwar, et al., “On the use of Microservers in supporting
Hadoop applications,” in Proc. IEEE Int. Conf. Cluster Comput.,
2014, pp. 66–74.

[39] Perf. (2016). [Online]. Available: https://perf.wiki.kernel.org/
index.php/Main_Page

[40] WattsUpPro meter. (2016). [Online]. Available: https://www.
wattsupmeters.com/

[41] M. Malik, et al., “Characterizing Hadoop applications on
Microservers for performance and energy efficiency optimiza-
tions,” in Proc. IEEE Int. Symp. Performance Anal. Syst. Softw., 2016,
pp. 153–154.

[42] Apache Mahout. (2017). [Online]. Available: http://mahout.
apache.org/

[43] K. Neshatpour, et al., “Accelerating machine learning Kernel in
Hadoop using FPGAs,” in Proc. 15th IEEE/ACM Int. Symp. Cluster
Cloud Grid Comput., 2015. pp. 1151–1154.

Maria Malik received the BE degree in computer
engineering from the Center of Advanced Studies
in Engineering, Pakistan, and the MS degree in
computer engineering from the George Washing-
ton University, DC. She is currently working
towards the PhD degree in the Electrical and Com-
puter Engineering Department, George Mason
University, Virginia. Her research interests include
of computer architecture with the focus of perfor-
mance characterization and energy optimization of
big data applications on the high performance serv-

ers and low-power embedded servers, accelerating machine learning ker-
nels, parallel programming languages, and parallel computing.

Katayoun Neshatpour received the master’s
degree from the Sharif University of Technology,
where she worked on the VLSI implementation of
a MIMO detector applied to the LTE. She is work-
ing toward the PhD degree in the Department of
Electrical and Computer Engineering, George
Mason University. She is a recipient of the three-
year presidential fellowship and a 1-year supple-
mental ECE Department scholarship. Advised by
Dr. Homayoun and co-advised by Dr. Sasan, her
PhD research is on hardware acceleration of big

data applications, with a focus on the implementation of several machine
learning algorithms in apache Hadoop and efficient implementation of
convolutional neural networks.

Setareh Rafatirad received the MS degree from
the Department of Information and Computer
Science, UC Irvine, in 2010 and the PhD degree
from the Department of Information and Com-
puter Science, UC Irvine, in 2012. She is an
assistant professor of the IST Department at
George Mason University. Prior to joining George
Mason, she spent four years as a research assis-
tant with UC Irvine. Prior to that, she worked as
a software developer on the development of
numerous industrial application systems and

tools. As a known expert in the field of data analytics and application
design, she has published on a variety of topics related to big data, and
served on the panel of scientific boards. She was the recipient of 3-year
UC Irvine CS Department Chair Fellowship.

Houman Homayoun received the BS degree in
electrical engineering from the Sharif University
of Technology, in 2003, the MS degree in com-
puter engineering from University of Victoria, in
2005, and the PhD degree from the Department
of Computer Science, UC Irvine, in 2010. He is
an assistant professor of the ECE Department at
George Mason University (GMU). He also holds
a joint appointment with the Computer Science
Department. Prior to joining GMU, he spent two
years with the UC San Diego, as a NSF Comput-

ing Innovation (CI) Fellow awarded by CRA and CCC. He is currently
leading a number of research projects, including the design of heteroge-
neous architectures for big data and non-volatile logics to enhance
design security, which are funded by the US National Science Founda-
tion (NSF), General Motors Company (GM), and Defense Advanced
Research Projects Agency (DARPA).

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

368 IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS, VOL. 4, NO. 3, JULY-SEPTEMBER 2018

http://dx.doi.org/20
http://lintut.com/dstat-linux-monitoring-tools/
http://lintut.com/dstat-linux-monitoring-tools/
http://dx.doi.org/21
http://dx.doi.org/1
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.wattsupmeters.com/
https://www.wattsupmeters.com/
http://mahout.apache.org/
http://mahout.apache.org/

