
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2020.DOI

Cognitive and Scalable Technique for
Securing IoT Networks Against Malware
Epidemics
SAI MANOJ P D1, (Member, IEEE), XIAOJIE GUO2, HOSSEIN SAYADI3, (MEMBER, IEEE),
CAMERON NOWZARI1, (MEMBER, IEEE), AVESTA SASAN1, (MEMBER, IEEE) SETAREH
RAFATIRAD2, (MEMBER, IEEE) LIANG ZHAO2, (MEMBER, IEEE), AND HOUMAN
HOMAYOUN4, (SENIOR MEMBER, IEEE)
1Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA 22030 USA (e-mail: {spudukot,cnowzari,asasan}@gmu.edu)
2Department of Information Science and Technology, George Mason University, Fairfax, VA 22030 USA (e-mail: {xguo7,srafatir,lzhao9}@gmu.edu)
3Department of Computer Engineering and Computer Science, California State University, Long Beach, CA 90840 USA (e-mail: hossein.sayadi@csulb.edu)
1Department of Electrical and Computer Engineering, University of California, Davis, CA 95616 USA (e-mail: hhomayoun@ucdavis.edu)

Corresponding author: Sai Manoj P D (e-mail: spudukot@gmu.edu).

ABSTRACT The sheer volume of IoT networks being deployed today presents a major “attack surface”
and poses significant security risks at a scale never encountered before. In other words, a single IoT
device/node that gets infected with malware has the potential to spread the malicious activities across the
network, eventually ceasing the network functionality or compromising the network. Simply detecting and
quarantining the malware in IoT networks does not guarantee preventing malware propagation. On the other
hand, use of traditional control theory for malware confinement is not effective, as most of the existing works
do not consider real-time malware control strategies that can be implemented using uncertain infection
information from the nodes in the network or have the containment problem decoupled from network
performance. In response, in this work, we propose a two-pronged approach with malware detection at node-
level, and confinement of malware at network-level. We deploy a recently proposed lightweight runtime
malware detector at the node-level that employs Hardware Performance Counter (HPC) values for malware
detection. This node-level malware information is combined with the malware propagation information and
then fed during runtime to a stochastic predictive controller to confine the malware propagation without
hampering the network performance. Synthesizing the node-level malware information with the model
predictive containment strategy leads to achieving an average network throughput of nearly 200% of that
of IoT network without any defense, and up to 160% of that of network with commonly employed state-of-
the-art heuristic approaches for malware confinement. Furthermore, to scale with ever-increasing network
topology sizes, we introduce a novel multi-attribute graph translation that can predict the network topology
and node state information when provided with a snapshot of topology and node-level malware infection.
The proposed multi-attribute graph translation has <5.88 Root Mean Square Error (RMSE) compared to
the model predictive containment strategy and has shown nearly constant graph translation time and limited
resource utilization independent of the network size.

INDEX TERMS Malware epidemics; Control theory; Malware detection; IoT security; Malware confine-
ment

I. INTRODUCTION

The grand vision of the Internet-of-Things (IoT) boasts a
fully connected global network connecting every imaginable
thing together. The benefits of such a vision are currently seen
spanning across many application domains including mobile,

health, smart homes, smart grids, and defense. Ameliora-
tion of miniature computing devices into the consumer and
industrial markets with enabled connectivity to the Internet
towards smart and intelligent features lead to an upsurge in
the size of networks through which the devices are linked and

VOLUME 4, 2016 1

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

communicate with each other [1], [2]. Unfortunately, with the
massive amount of potential benefits offered by IoT devices,
there comes an equal amount of potential vulnerabilities and
security risks that have never seen before [3], [4], [5], [6],
[7], as the security is often neglected in IoT devices’ design
[8], [9], [3].

From the adversaries’ perspective, the feasibility for mal-
ware1 propagation via connected network with none/weakly
built defense measures, and a vast connectivity makes the IoT
devices a potential target for cyber-attacks [3], [4], [10], [5],
[6], [7], [11], [12]. These attacks can be targeted at various
IoT devices such as routers, surveillance cameras, and mobile
phones. It is highly possible that the malware spreads across
the network as soon as one of the devices/nodes is infected,
and the entire network immediately becomes compromised
[13], [14], [9]. In April 2017, an attack named ‘Bricker-
Bot’ was launched in the USA, where IoT devices such as
routers stopped functioning for the users who never changed
their default ‘usernames’ and ‘passwords’ for their devices.
Similar attack occurred in Germany with the hacking of
Deutsche Telekom network in November 2016, resulted in
widespread Internet blackout for three days. The amount
of attacks on IoT devices are augmenting tremendously.
According to latest McAfee threat reports [8], there is nearly
38% increase in new malware in the year 2018 (more than
800 million samples in 2018), and nearly 15% of the ex-
isting enterprises being attacked [15]. Unfortunately, given
the magnitude of deployed and emerging IoT networks, it
becomes impractical to quarantine the infected systems as
the malware would have propagated to other devices already.
More specifically, the accentuating size and popularity of
these networks further exacerbates the challenge of securing
IoT devices and restricting the malware propagation, as we
no longer have the option to just ‘restart’ the entire system,
as the cost of restarting a massive network may easily exceed
the cost of potential malware existing in the network. The
propagation of malware through the IoT networks not only
leads to infecting multiple IoT devices, but also can signifi-
cantly degrade the network performance such as throughput.
Preserving the network connectivity for the functionality
and communication can be seen as potential threat in IoT
networks leading to spread of malware in IoT network and
edge devices [16], [17], [18], [19], [8]. On the contrary side,
it is non-trivial to maintain the connectivity (throughput) to
facilitate the communication and preserve the functionality
while proposing effective solutions to improve the security
and/or performance. Thus, detecting threats and minimizing
the traffic/network access from the compromised nodes is
non-trivial to protect the users from different cyber-threats
including DDoS [16], [17], [18], [19], [20].

Coupling the above-discussed issues of malware attacks

1Malware, also known as malicious software, is a piece of code designed
to perform various malicious activities, such as destroying or manipulating
the data, stealing information, running destructive or intrusive programs on
devices to perform Denial-of-Service (DoS) attack, and gaining root access
without the consent of user.

on a single IoT node, and their propagation through the
network reveals some significant issues that have to be ad-
dressed before realizing large-scale global deployments of
IoT networks. In this work, we propose a unified solution
that addresses the challenge of malware detection and prop-
agation in an IoT network by: a) deploying an effective yet
lightweight runtime malware detection on IoT devices; and
b) confining the propagation of malware in the IoT network
with imperfect infection obtained from node-level malware
information while preserving the network connectivity and
overall performance. Albeit, the malware confinement can
be performed effectively using a stochastic optimal control
technique, the scalability is limited to networks with few tens
of nodes. To further improve it, a novel multi-attributed graph
translation method is proposed based on multi-attributed
graph translation generative adversarial nets.

A. ASSOCIATED RESEARCH CHALLENGES
Solving the aforementioned problem involves multiple re-
search challenges that are highlighted in this section.

1) Limited Resource Availability
Unlike general network systems, IoT devices are designed
only with fundamental cyber-physical functions in mind
such as sensing and actuation with minimal computational,
storage, and communication capabilities. As such, carrying
out compute-intensive operations for malware detection or
storing the malicious patterns to detect cyber-attacks dur-
ing runtime are impractical in these devices. For traditional
computing systems, several techniques have been explored
for malware detection including dynamic binary instrumen-
tation [21], anomaly detection [22], information flow track-
ing [23], [24], [25], taint-analysis and symbolic execution
[26], and VM introspection [27]. There also exist traditional
approaches such as semantic [28], [29], [30] and signature-
based [31], [32], [33] solutions including off-the-shelf anti-
viruses as well. However, most of these techniques are
slow, and require large computational resources and memory
[34], [35], [36], [37], making them infeasible to be adopted
in IoT and resource constrained devices. Furthermore, the
emergence of new malware threats often requires patching
or updating off-the-shelf software-based malware detection
solutions (such as anti-virus) and incurs a large amount
of memory, hardware resources, as well as network com-
munication bandwidth. Therefore, IoT devices in general
cannot accommodate resource intensive solutions, thus are
vulnerable to security threats. As such, it is crucial to deploy
a lightweight malware detector for resource constrained IoT
systems. In response to the latency and processing overheads
incurred by existing malware detectors, Hardware-assisted
Malware Detection (HMD) technique2 is proposed [35]. In
this work, we adopt a recently proposed lightweight HMD
solution [36] on IoT nodes to detect the malware. It needs

2In HMD, signatures of the underlying hardware events are utilized to
detect malicious applications (malware).

2 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

to be noted that HMD is solely adopted based on the experi-
mental setup and other mechanism can be chosen depending
on the devices utilized. Also, we emphasize that HMD [36]
is neither contribution nor the proposed solution is bound to
HMD proposed in [36]. Deploying a lightweight malware de-
tector will benefit by reducing the resource consumption and
also aids when designing a malware confinement solution,
as will be discussed later. It needs to be noted that HMD
is solely adopted based on the experimental setup and other
mechanism can be chosen depending on the devices utilized.
Other malware detectors that consider different attributes of
the node and/or network can also be considered as long as it
provides the estimate of presence of malware.

2) Malware Propagation through Communication Links

In addition to the malware detection at node-level in an
IoT network, the propagation of malware poses additional
challenges in IoT networks. The connectivity between IoT
devices both in terms of close proximity, and sheer numbers
make them vulnerable to contamination. None/minimal secu-
rity measures in the networks result in compromise of other
device’s/node’s security3 through propagation. If a perfect
real-time malware detection is feasible, an effective strategy
is to simply detect and quarantine the malware to avoid
malware propagation into the network. However, constantly
evolving malware is showing that no detection technique will
be instantaneous and deliver a perfect yield, as many malware
are purposely designed to avoid detection. For instance, the
work in [38] has shown the possibility of spreading a light
bulb worm which allows a reprogrammed bulb to re-flash
nearby counterparts.

In addition, due to limited computing resources at the
node-level, sophisticated and highly accurate malware de-
tection solutions cannot be afforded [36], [39], [34], [35].
Consequently, deploying a semi-accurate malware detection
method and a proactive approach such as immediately dis-
connecting the links in the network, while can confine mal-
ware, but also impact network performance and throughput,
or even can result in communication loss, which is detrimen-
tal to the network performance. As a result, a more effective
and methodical technique to confine malware propagation
through communication links is needed, that balances the
desire to contain the malware while preserving the net-
work functionality and performance in the presence of semi-
accurate malware detectors.

3) Scalability of Traditional Malware Confinement Methods
Malware confinement by formulating as a stochastic con-
trol problem and optimization, though effective (solution to
previous challenge of malware confinement), requires mal-
ware propagation information to be predicted feed-forward
in time to ensure that the trade-off between performance

3Compromised node refers to an IoT device that has been infected by
malware.

and malware infection is met. This incurs significant la-
tencies, and thus it is limited to few tens of nodes due to
involved complexity. The large execution time and mem-
ory consumption of simulation-based models motivate us
to consider data-driven-based models in machine learning
(ML) domain [40]. Motivated by the most recent progress
of self-supervised learning in ML community, cutting-edge
deep learning methods are able to learn the transformation
mapping of complex data from one status to another [41]. For
example, image translation methods transfer a painting from
one style to another based on convolutional neural networks
and generative adversarial nets [42]. Once the transformation
mapping is learned, the prediction is instantaneous, just the
same as that of conventional supervised learning method. For
self-supervised learning, although deep generative models
have proven their effectiveness on the generation of contin-
uous data such as images, and videos, the prediction and
generation for discrete data such as graphs are still open
questions and are extremely challenging.

However, the problem of malware confinement requires
constant prediction of the malware propagation status across
the network, which is to predict a graph based on the current
topology. The recently introduced generative deep learning
models for graphs are typically unconditioned generative
models, which typically only synthesize additional graphs
directly following the distributions of the observation graphs
and has no control over modes of the graphs being generated.
However, in our problem, we need to predict the future graph
status based on the current graph status and node status, thus
a model that can generate a graph by conditioning on another
is required, which cannot be achieved by the existing graph
learning models.

B. OVERVIEW OF PROPOSED SOLUTION
In this work, we propose a two-pronged approach for effec-
tive malware detection and confinement in IoT networks.

First, we address the problem of malware detection on
the IoT devices by deploying effective hardware-assisted
malware detection proposed in a recent work [36], under the
constraints of optimum latency, power and silicon footprint.
This is adapted in this work based on the devices we chose
in the experiments i.e., devices that host on-chip Hardware
performance counters (HPCs) registers. However, other mal-
ware detection techniques can be adopted, as the stochastic
controller is not dependent on the HMD, rather it requires
an estimate of malware at node-level. From our experimental
evaluations, we employ a lightweight rule-based JRip classi-
fier at node-level to analyze the microarchitectural events and
classify the malware and benign applications. The advantages
of employing such HMD are its low processing overheads
along with high detection performance [36]. Regardless of
the best efforts on deploying highly accurate malware detec-
tors, malware propagation is still feasible in IoT network, as
no “perfect” malware detector exist.

Further, to confine the malware propagation in the net-
work, the outputs of deployed node-level malware detector

VOLUME 4, 2016 3

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

are fed to the proposed malware epidemic controller. It needs
to be noted that to solve the stochastic control problem
for malware confinement, it requires an estimate of node-
level malware existence from the malware detector, rather
than accurate detection information. Furthermore, as accurate
information might not be always feasible, using stochastic
optimization utilizing the estimate is more beneficial. While
there exists vast research on epidemic processes control in
general, there are very few works that consider tractable real-
time feedback control solutions working with the stochastic
dynamics of malware spreading [43]. Works such as [44]
performs the optimal control to minimize the spread of the
malware, but only considers spreading characteristics rather
than node state, which also plays a non-trivial role in malware
spreading. Instead, the only known works that primarily
study control of the stochastic dynamics are [45], [46], [47].
In [45], [46], it is shown that for the standard continuous-
time (Susceptible-Infected-Susceptible) SIS epidemic pro-
cess, there exists a finite threshold for varying the heal-
ing parameter of the process, above which the process can
be controlled to the disease-free equilibrium exponentially
quickly, and below which it cannot. In addition, these works
mathematically characterize a sub-optimal controller for the
processes and characterize its sub-optimality. However, the
computations required to implement such controllers are
known to be NP-hard and inapproximable, indicating that
they are not applicable for real-time confinement. Instead,
a tractable fixed rolling horizon controller is developed in
[47] that considers performance constraint can be seen as a
solution addressing similar challenge, however, a mechanism
to incorporate node-level information is not available.

In this work, instead of directly solving the stochastic opti-
mal control problem, which requires efficient methodologies
for estimating and predicting the future malware propagation
in the network graphs, a similar functionality is mimicked
by our novel graph translation method, in which the future
propagation graph topology and node status (malware prob-
ability) is predicted based on the current topology and node-
level malware information. Different from graph generation
problem, graph translation considers learning the propaga-
tion process from one graph state to another state. Existing
methods [48] only deal with the topology translation, which
is not suitable for our problem, where the node attributes
(states) and propagation controlling parameters have influ-
ence on the propagation process. Specifically, we propose a
multi-attributed deep graph translator (MA-DGT) to learn the
propagation process from the initial graph to infected graphs,
where the translation process is controlled by node states, and
topology.

C. CONTRIBUTIONS
The contributions of this work can be outlined in a four-fold
manner as follows:
• We develop a unified framework for combining the

models of malware spreading processes on IoT net-
works explicitly with their direct adverse effects on

network performance and formulate a stochastic optimal
control problem for malware confinement while main-
taining the network connectivity.

• We show how the output of a node-level malware de-
tector can be deployed to generate imperfect estimates
of infection state information as an input to proposed
rolling horizon optimal controller for epidemic contain-
ment.

• We propose a heuristic end-to-end detection and de-
fense strategy for IoT networks to solve the malware
confinement problem. We demonstrate its superior per-
formance against commonly used heuristic containment
strategies.

• Lastly, to address the scalability concerns, a novel
deep learning-based graph translation method is pro-
posed based on graph convolutional neural networks
and generative adversarial nets. Once being trained, the
proposed method runs instantly and much faster than
deriving the solution for stochastic optimal problem i.e.
malware confinement.4

II. PROBLEM FORMULATION
Here, we introduce the IoT network architecture and the
malware model, based on which we formulate the stochastic
optimal control problem for malware confinement.

A. IOT NETWORK ARCHITECTURE
The network architecture and connectivity to various IoT
nodes is shown in Figure 1. The network comprises of
multiple heterogeneous nodes, each having an on-board low-
end microprocessor to perform simple operations such as
attenuation, routing, and noise removal. The heterogeneous
IoT nodes are placed randomly in a L ×M space, (L is the
length and M is the width), with each node connected to its
neighboring IoT node(s) within range R via Bluetooth. The
nodes are of type broadcasting stations, routers, or sensory
nodes. Each of these nodes are equipped with a lightweight
ML classifier to differentiate the malware and benign applica-
tions during runtime. This requirement is for the considered
experimental setup but is not a requirement nor constraint
to deploy our proposed solution. The process of malware
detection on IoT nodes is illustrated in the left zoom-out
box of Figure 1. A runtime malware detection is adopted
from a recent work [36], where it is considered the devices
that has embedded processor and utilizes ML for malware
detection, similar to [34], [35], [36], [49]. However, one can
accommodate other malware detection techniques, as long
as it can provide an estimate of node-level infection. In this
work, we consider all the nodes to be of same priority (all
the devices are equally important) and the nodes can host
a microprocessor to execute the adopted malware detection
technique. The rationale for such assumptions is that future
IoT networks consist of smart devices. As aforementioned,
other lightweight techniques can be considered for malware
detection depending on the utilized device’s specifications.

4The source code is available at https://github.com/xguo7/MA-GT-GAN

4 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

IoT Network
Epidemic Model

Predictive

Controller

ML classifier –

benign or malware

(Probability)

HPCs

Feature reduction

A
 r

an
d

o
m

 d
ev

ic
e
 i

n
 a

n
 I

o
T

 n
e
tw

o
rk

em
b

ed
d

ed
 w

it
h

 m
al

w
ar

e
 d

et
e
ct

o
r

Malware

probability

Malware

probability

Malware

probability
...

...

Stochastic optimal controller

Modifying network to preserve network

integrity and meet performance goals

Devi

ce 1

Devi

ce 2

Devi

ce n

Performance goals met or not
Network connectivity

Network connectivity

information

Connectivity update

...

Figure 1: IoT network comprising of numerous nodes connected with the aid of IoT gateways with malware detector deployed
on each node and a centralized malware confiner

At time-instant 0, a set of randomly chosen nodes (2 nodes
in this work) are set to be infected. However, as the time
progresses, any of the nodes in the network and at any point
of time can be infected. A centralized epidemic malware
predictive controller is embedded into the network to modify
the network topology during runtime in order to confine
the malware propagation in the network. The malware in-
formation from each node is directly communicated to the
controller. This controller is fed with the node-level malware
infection probabilities to perform a stochastic control-based
network optimization and preserve the network connectivity
and confine the malware epidemics. The process of malware
confinement is illustrated in the right zoom-out box of Figure
1. As the deployed network size is limited, a centralized
controller is employed. However, for a large network, a
hierarchy of controllers can be deployed, or network can be
split using techniques such as graph slicing [50]. For real-
time confinement in large scale networks, this work proposes
MA-DGT.

B. MODELING MALWARE

We present the used notations, malware propagation model,
and the effects of malware propagation on the network here.
Notations. We use R≥0 to denote the set of non-negative
real numbers, and Z≥0 for the set of non-negative integers.
The expectation of a random variable X is denoted by
E[X]. Note that when the measure of expectation is clear
from the context, we omit it. However, when necessary, we
explicitly include it as a subscript of the operator, i.e. Eµ[X]
indicates the expectation of X w.r.t. measure µ. Similarly,
when clear from the context, we omit the initial condition
X(0) of a stochastic process. When necessary, we explicitly
include it as a part of the expectation’s conditioning, i.e.
E[X(t)|X(0)], or interchangeably by a bracketed superscript
i.e. E[X(0)][Xt].
Malware Spreading Model. The standard model used in the
study of computer malware epidemics is the SIS model [51],
[52]. In SIS model, the node is assumed to be either in in-
fected (I) or susceptible (S) states. The primary assumptions
in this work for the modeling are: the embedded nodes quar-
antine the malware once detected and the infection happens
immediately. The considered model also reflects the real-
world malware spreading such as worms and viruses, where
the malware infects the node (node transitions to infected
(I) state) and gets quarantined by the anti-virus techniques

(i.e. node becomes malware free (S state)) [53], [54], [51].
The deployed malware spread model is also analogous to
the internet worms and viruses that infects a node and start
propagating through the network through downloads or self-
replication. Some of the real-world malware that follow this
kind of model are ‘badBios’ [55], ‘Yankee Doodle’ [56],
and ‘Magneto’ [57]. Thus, based on these real-world ex-
amples and the considered node architecture with malware
detector, ultimately, we use the stochastic SIS, which is
a well-established model for epidemics on large-scale net-
works [58], [59], [60], [43], [51]. However, the proposed
malware confinement only requires the estimate of malware
propagation in the network and is applicable to other kinds
of malware spreading models. In this work, the network is
represented as a weighted directed graph G = (V, E ,W)
with |V| = n nodes, E ⊂ V × V as the directed edges,
and W ∈ Rn×n is the weighted adjacency matrix. The
edge (i, j) ∈ E means that node j is sending data to node i
at a rate proportional to wij . Note that wij > 0 if and only
if (i, j) ∈ E , and wij = 0 otherwise. We denote the set
of neighbors of i as Ni = {j ∈ V|(i, j) ∈ E}. At any
given time, the set of nodes are split into two compartments:
Susceptible (S) and Infected (I), that represents the infection
state of each node. Then, the state of node i at time t is
given by the binary random variable Xi(t) ∈ {0, 1}, where
Xi(t) = 1 indicates that the node i is infected with malware
at time t, and similarly, Xi(t) = 0 indicates that the node i is
currently free of malware, but susceptible. The infection state
of the entire network is denoted by a vector X(t) ∈ {0, 1}n.

The intuition of malware spreading model is as follows.
Any node i that is infected with the malware is capable of
passing it to a neighbor j ∈ Ni (within radius R) randomly
with a Poisson rate β > 0 proportional to the amount of
traffic flow wij , β termed as infection rate. At the same time
each infected node is also able to naturally recover with a
Poisson rate δ > 0, δ termed as recovery rate. Thus, the SIS
spreading process can be modeled using the Markov process
as

Xi : 0→ 1 with rate β
∑
j∈Ni

wijXj ,

Xi : 1→ 0 with rate δ.
(1)

Effect of Malware on the Network
In addition to the malware spreading model, we also present a
model to study how the malware negatively affects the perfor-
mance of a given network. Depending on the application, we

VOLUME 4, 2016 5

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

define a performance function P : Rn×n × {0, 1}n → [0, 1],
where P (W,X) ∈ [0, 1] is the performance of the network,
given network W and state of all the nodes X . If the original
network G is used and all the nodes are healthy, i.e. X(t) =
0n, then P (W,X(t)) = 1 meaning the network is running
at 100% performance. As nodes are infected and links are
removed from W , the performance degrades depending on
the application of the network.

More specifically, we will consider a malware threat pa-
rameter σ ∈ [0, 1] that models the strength of malware
for a chosen performance metric P . This malware threat
parameter is defined based on the impact that it has on the
performance of the network with σ = 0 being the weakest
and σ = 1 being the strongest, such as DoS malware. The
σ = 0 indicates that the malware has absolutely no effect on
the actual performance of the network (benign malware such
as data stealing). In this work, the malware threat parameter
is determined from the database manually but can be deter-
mined as inverse to degradation of the network performance.
A specific example of a performance metric P is given later
in Section III-B.
C. FIXED-HORIZON STOCHASTIC OPTIMAL CONTROL
PROBLEM
Based on the introduced models and notations, we formulate
the problem of malware propagation control in the network.
Let W ′(t) denote the modified graph where the traffic be-
tween some nodes may have been reduced due to different
control activities such as removal of links. In other words,
as a consequence of the control mechanism, traffic (transmis-
sion of malicious applications) is regulated between each pair
of active links with w′ij ≤ wij to reduce the chance of node j
spreading malware to node i [61], [62]. Thus, the problem
can be defined as maximizing the objective function

J =
1

T

∫ T

0

P (W ′(t), X(t)) (2)

over some time horizon T > 0. Here P (W ′(t), X(t))
denotes the performance of the network at time-instant t.
Note that this objective function explicitly captures the trade-
offs between shutting down links to contain the malware at
the cost of reducing instantaneous network performance and
keeping links active to maintain the network performance at
the risk of letting the malware spread.

This problem poses two challenges to address. First,
in general, we may not have access to the true infection
stateX(t), i.e. malware is often meant to be undetected. This
indicates that a mechanism to detect the malware on nodes is
required to combat the malware propagation in the network.
Second, the stochastic network dynamics already make this
a non-trivial problem even if access to the true infection
state X(t) is available. In addition, there are only very
few works that have studied the optimal feedback control
problems for stochastic networked epidemics [63], [64], [65],
[43], [66], [67].

Optimizing equation (2) is non-trivial even if the infection
state X(t) of the network is known at all times. Thus, to

solve the problem of malware containment in the network,
we partition it into three subproblems: how to best detect
the malware on the nodes, confine the malware based on the
outputs of inaccurate malware detector and perform malware
confinement in large-scale networks.

SUBPROBLEM 1: MALWARE DETECTION AT IOT
NODE-LEVEL
As aforementioned, maximizing the objective function J in
equation (2) with access to X is a complex problem to solve.
However, with a better estimate of true infection state of
nodes, the performance maximization can be enhanced by
deploying a better malware confinement technique in the IoT
network. As such, a fast, and reliable malware detector is
required to limit the malware spread in the IoT network.
From the IoT device perspective, the malware detector needs
to be resource efficient, and low cost to ensure that it fits on
to the existing resource on the device.

In order to meet the above-mentioned challenges of mal-
ware detection at node-level, we adopt the hardware-assisted
malware detection proposed in recent work [36]. In this work,
the microarchitectural events are collected through the hard-
ware performance counters and fed to a ML classifier (JRip
is chosen in this work based on its superior performance
and lower overheads (1 clock-cycle latency and 80× lower
area) compared to ML classifiers like neural network) to
differentiate benign and malicious applications (shown in left
zoom-out of Figure 1). Additional details and evaluations of
the adopted malware detection work is presented in Appendix
-B.

SUBPROBLEM 2: OPTIMAL NETWORK CONNECTIVITY
MAINTENANCE
Regardless of the malware detection method used at the
node-level, there exists misclassification (false negatives),
especially for the emerging unseen malware. Thus, even with
highly accurate malware detection, a well-connected IoT
network serves as a vulnerability that can allow the malware
to spread very quickly across the network before it can even
be detected. Lack of information on node infection estimate
leads to a random optimization, which is not efficient. This
indicates that in addition to the malware detection, a more
proactive and pragmatic defense mechanism to maintain the
network connectivity is needed rather than a simple ‘detect
and quarantine’ strategy, as by the time a device identified to
contain malware has been quarantined, malware could have
already spread to other devices in the network.

As mentioned, to the best of our knowledge there are no
prior works that are able to completely solve the problem
presented in equation (2). However, if we ignore the per-
formance aspect of the problem, there is a set of research
dedicated to containing epidemics. In particular, we consider
the solution proposed in [47], [68] where a rolling horizon
model predictive controller is designed for containing the
stochastic epidemic process as quickly as possible for a
given budget constraint. However, the novelty here is to in-
tegrate the malware propagation information with node-level

6 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

information as well as modeling the malware confinement
as rate-constrained problem and deploying rolling horizon
model predictive controller. More specifically, the algorithm
proposed in [68] is capable of solving the following rate-
constrained allocation problem.
Rate-constrained Allocation: Let gij : R≥0 → R≥0 be
decreasing function that denotes the cost of setting the weight
of an edge. More specifically, gij(w′ij) is the cost required to
change the weight of edge (i, j) ∈ E from wij to w′ij . Note
that gij(wij) = 0 for all (i, j) ∈ E meaning there is no cost
associated with leaving a weight unchanged. Then, given a
desired decay rate r ∈ (0, 1), the rate-constrained allocation
problem is to determine the optimal network configuration to
eradicate the disease with a decay rate of at least r. This can
be mathematically formulated as

min.
{w′ij}(i,j)∈E

∑
(i,j)∈E gij(w

′
ij)

s.t. E [
∑n
i=1Xi(t+ ∆t)|{Pr(Xi(t) = 1)}i∈V]

≤ r (
∑n
i=1Xi(t)) ,

w′ij ≤ wij (i, j) ∈ E
(3)

for all i ∈ {1, . . . , N}. Given the current probability of
infection for each node X̂i(t) = Pr(Xi(t)) and a desired
decay rate r > 0, the algorithm proposed in [68] finds
the minimum-cost allocation to realize this geometric decay
rate in expectation i.e. after one time-step, the total number
of infected nodes in the network should have decreased in
expectation, as given in Section III.

We note that although this problem is not equivalent to
optimizing equation (2), it is very closely related through
choosing the rate constraint r. More specifically, r → 0
means that the algorithm wants to eradicate the malware
as quickly as possible, regardless of how many links it
needs to remove. In the case of optimizing equation (2), this
is not a practical solution as this would mean completely
disconnecting our network to guarantee the infection stops
spreading; unfortunately, this would mean that the primary
function of the network is completely decimated. On the
other hand, r → 1 means that the algorithm is not concerned
as much with ensuring that the malware is eradicated. Con-
sequently, this decay rate r, which is an input to the rate-
constrained allocation problem, can be used to balance how
much we want to cease the spreading of the malware with
how important it is to maintain connectivity of network.
SUBPROBLEM 3: SCALABILITY OF MALWARE
EPIDEMIC CONTROL
Stochastic control based solutions are slow in nature and
often involve computational complexities resulting in large
delays. To apply for large-scale IoT networks, we formulate
this scalability problem similar to translation of one graph to
another graph, where the initial graph is the state of network
before solving stochastic control optimization and the output
(translated) graph is the graph after solving the stochastic
control problem i.e. with new interconnects that limit mal-
ware epidemics and maintain network throughput. Thus, the
problem is formalized as a multi-attributed graph translation

conditioning on two kinds of attributes: the node states and
parameters. We define an input graph GX = (V, E ,W) as an
undirected weighted graph. The infection state of the entire
network is denoted by a vectorX(t) ∈ {0, 1}n. The is also an
undirected weighted target graph GY = (V ′, E ′,W ′), which
is a result graph after the SIS spreading process. An external
parameter vector is given as P = {β, δ, r} consisted of in-
fection rate, recovery rate and decay rate. Typically, we focus
on learning the translation from one circuit connections GX
to another GY . Translation focuses on learning a translator
from an input graph GX , a random noise U as well as the
two kinds of attributes X and P , to a target graph GY , the
translation mapping is denoted as T : U,X, P,GX → GY .
III. MALWARE EPIDEMIC CONTROL
To perform the malware epidemic control, we first obtain
the node-level malware information using the adopted HMD
[36]. Further to confine the malware, we employ an epidemic
model predictive controller to which the output from the
node-level malware detector is fed. We first discuss the
epidemic model predictive control optimization followed by
its deployment to solve the problem of malware confinement
in the network.
A. EPIDEMIC MODEL PREDICTIVE CONTROLLER
In order to contain the malware, we apply the rolling horizon
controller developed in [47]. Theorem 3.1 shows how the
rate-constrained allocation problem in equation (3) can be
reformulated as the equivalent convex program below.
Theorem 3.1: [Convex Bayesian SIS Control [47]] Consider
the convex optimization program

minimize
~δc,~γ

∑
i∈V

fi(δ
c
i) +

∑
(i,j)∈E

g̃ij(γij)

s.t.
∑
i∈O

δciXi + ψ
{w}
i Xc

i +∑
i∈Oc

δci x̂i(t|t) + ψ
{w}
i x̂ci (t|t)

≤ r
∑
i∈V

x̂i(t|t),

(4)

where we additionally restrict the variables δci and γij to the
closed unit interval, and have defined the convex functions

ψ
{w}
i =


1− x̂j′(t|t)γ

1
w

j′iΠj∈{Ni∩Xi} γ
1
w
ji

−x̂cj′(t|t)Πj∈{Ni∩Xi}γ
1
w
ji , i ∈ O

1−Πj∈{Ni∩Xi} γ
1
w
ji , i ∈ Oc

(5)
where w > dmax, the sets Xi = {i ∈ V ∩ O |Xi = 1},
and the shorthand notation Xc

i = (1 − Xi), x̂
c
i (t|t) =

(1− x̂i(t|t)), and δci = (1− δi) for purposes of compacting
notation. Suppose the functions fi and g̃ij = gij(1 − γ

1
w
ij)

are convex in the variables δci , and γij respectively, then
equation (3) and equation (4) are equivalent optimization
problems, where the optimal edge weights of equation (3) can
be computed as γ′ij = 1 − (γ?ij)

1
w , where γ?ij is the solution

to equation (4).

VOLUME 4, 2016 7

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

In Theorem 3.1, the setO ⊂ V denotes the set of nodes for
which the binary infection data is known, and Oc = V \O is
the set of nodes for which no data is available. Unfortunately,
in our practical setup, since the malware detection algorithm
will not always be perfect, we actually do not have access
to the exact infection data Xi(t) for any nodes i ∈ V .
Instead, the HMD provides independent estimates X̂i(t) =
Pr(Xi(t) = 1). This requires determining a way manipulate
Theorem 3.1 to match our requirements and use it to solve
the rate-constrained allocation problem equation (3), as dis-
cussed below.

Since the true infection stateXi(t) is a binary random vari-
able for each node i, we instead maintain an estimate X̂i(t) ∈
[0, 1] at all times. More specifically, we let X̂i(t|t) be the
estimate of infection state Xi(t) about time t available at
time t.

Taking expectations of the random binary infection vari-
ables, the dynamics according to equation (1) are given by

dE[Xi](t)

dt
= −δXi(t) + β

∑
j∈Ni

w′ijXj(t) (6)

where the modified network W ′ is used rather than the
original network W . In addition, we need to combine this
estimate with the updated information provided by the HMD.
Using this, we can propagate the estimates forward in time.

Given the current infection estimate X̂i(t`|t`), we propa-
gate this forward according to equation (6), a short time later
by

X̂i(t`+1|t`) = X̂i(t`|t`) + ∆t(−δX̂i(t`|t`)+ (7)

β
∑
j∈Ni

w′ijX̂j(t`|t`)). (8)

However, these estimates with outputs of the deployed
malware detector (HMD) has to be combined in order to
obtain independent estimates X̂i(t|t) = Pr(Xi(t) = 1) each
time the malware detection algorithm is executed.

Let yi(t`) ∈ [0, 1] be the output of the proposed malware
detector (HMD) on node i at time t`. Assuming this output
is an independent probability that the node is infected with
malware, we update the probability of infection of each
node X̂i(t`|t`) conditioned on the new information available
at each sampling time t ∈ {t`}`∈Z≥0

as
X̂i(t`|t`) = 1− ((1− X̂i(t`|t`−1))(1− yi(t`))) (9)

Thus, given both a way for propagating the esti-
mate X̂(t′|t) at time t and a way to incorporate new mea-
surements yi(t`), we have a method for estimating X̂(t) of
the infection state of all nodes.

More specifically, revisiting the Theorem 3.1 and rather
than seeing O = ∅ as the set of nodes, we now have
the perfect infection information, and we instead use the
independent probabilistic estimates of each node’s infection
state at each time-step {t`}`∈Z. This is done by combining
the propagation equations with the outputs of HMD, we can
generate artificial observations X̂i(t`|t`) = Pr(Xi(t) = 1)
for all nodes i ∈ V , as given in equation (9).

Based on this, by considering the special case of Theo-
rem 3.1 where we now have O = V and Oc = ∅, and for
a fixed recovery rate δ > 0, we simplify it to an equivalent
formulation as shown in Theorem 3.2 below.
Theorem 3.2: [Equivalent problem as Theorem 3.1] Consider
the convex optimization program

minimize
{w′ij}(i,j)∈E

∑
(i,j)∈E

gij(w
′
ij)

s.t.
∑
i∈O

(1− δ)Xi + ψ
{w}
i (1−Xi) ≤ r

∑
i∈V

X̂i(t|t),

(10)
where, we have defined the convex function

ψ
{w}
i = 1−X̂j′(t|t)γ

1
w

j′iΠj∈{Ni∩Xi} γ
1
w
ji−x̂

c
j′(t|t)Πj∈{Ni∩Xi}γ

1
w
ji

(11)
where w > dmax and Xi = {i ∈ V ∩ O |Xi = 1}.
Suppose the function gij is convex in the variable w′ij , then
equation (3) and equation (10) are equivalent optimization
problems, where the optimal edge weights of equation (3)
can be computed as w′ij = 1 − (w?ij)

1
w , where w?ij is the

solution to equation (10).
Note that the convexity of each ψ{w}i can be verified by

applying an established result from signomial optimization
works such as [69]. However, it is worth noting that product
terms are in general non-convex, and so CVX [70] may
not solve the problem. Solutions can instead be obtained by
coding standard convex optimization algorithms (see [71]).
Thus, it is possible to effectively solve the rate-constrained
allocation problem with a chosen decay rate.
B. OVERALL SOLUTION
Finally, to put the solutions of the 2 subproblems together
in a way to solve the optimization problem in equation (2),
we need to consider a specific form of the performance
function P . There exist numerous metrics to evaluate the
performance of a network such as throughput, latency, and
bandwidth. In this work, to evaluate the network performance
in terms of network throughput, as given by [72], [73]

P (W ′(t), X(t)) = τ =

∫ T

0

log(1 + w)

h
Psuc(1−X(t))

(12)
where Psuc is the probability of successful transmission,
modeled as the inverse of the node malware infection proba-
bility; h is the number of hops; and w is the weight assigned
to the communicating nodes (signal-to-noise ratio (SNR)).
The SNR is given by

gijd
−α
ij∑

k∈L(t)\j gijd
−α
ik

(13)

where dij represents the distance between nodes i, j with a
channel gain gij in the network L(t) at a given time t; The
path-loss exponent is given by α. As such, the traffic between
nodes is determined based on the throughput, connectivity,
and the malware infection of the nodes. The decay rate r is
provided to the epidemic controller based on the malware
threat parameter σ obtained from Virustotal.com [74] as a

8 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

way to limit how much the network can be disconnected.
As r → 0, the solution to Theorem 3.2 provides much
more aggressive containment strategies by disconnecting the
entire network. On the other hand, as r → 1, the solution to
Theorem 3.2 allows the malware to spread and not disconnect
many links. Based on this, the proposed optimization solution
determines the best possible network connectivity in order
to maintain as many original connections as possible while
satisfying the desired decay rate. The proposed work can
also be extended to other network of devices under different
resource constraints, though we showcase the benefit for IoT
network here.
IV. GRAPH TRANSLATION BASED MALWARE
CONFINEMENT
In order to perform the graph translation i.e., predict the
graph (network topology) instantaneously, which is similar
to the graph predicted by the stochastic optimization solu-
tion, we propose to use a graph translation model to handle
the malware epidemic confinement problem automatically.
However, the existing translation model [48] generates output
graphs only conditioning on the input adjacent matrix W
without additional attributes, e.g.the node states as well as
the malware parameters (infection, recovery and decay rates),
which are critical to the malware epidemic confinement
process. Thus, graph translation-based malware confinement
has two challenges that cannot be solved by the existing
translation model: 1) Node state representation as the input
conditions, and 2) Fusion of different contextual information
in different dimensions.

To solve the above two challenges, we propose a fusion
representation of graphs containing both edge and node infor-
mation, and further propose a multi-attributed discriminator
and generator architecture (MA-DGT) by integrating the im-
pacts of input graphs and external attributes on the translation
process. An overview of the proposed MA-DGT architecture
is shown in Figure 2. The functionality of individual compo-
nents is described below.

Generated?

Label?

Graph 𝑋

Generated graph 𝑌′

Discriminator

GeneratorNoise

Label graph 𝑌

Parameter vector

Spatial replicate
𝑝1×𝐾 → 𝑃𝑁×𝑁×𝐾

Node state vector

Figure 2: Architecture of proposed MA-DGT for network
translation

A. MULTI-ATTRIBUTED GENERATOR
1) Fusion representation
The edges of undirected weighted graph are initially pre-
sented as a symmetry matrix. To avoid redundant compu-
tations, we restrict the direction of connection from high
indexing nodes to low indexing nodes, thus transforming

the symmetry matrix to an upper triangular matrix in di-
rected graph. Specifically, denote the W l,m ∈ Rn×n as the
weighted adjacency matrix for l-th layer in m-th feature map
and W l,m

i,j is for the edge ei,j . Let A denote the weighted
adjacency matrix of the input graph. The node state informa-
tion is stored in the diagonal values of A. To incorporate the
parameters vector P , we do a spatial replication to reshape
P ∈ R1×3 to P ∈ Rn×n×K . Then the attributed input
graph tensor W ∈ Rn×N×4 is generated by concatenating
adjacent matrix A and parameter matrix P . Φl,m ∈ R1×n

and Ψl,m ∈ Rn×1 are the incoming and outgoing kernels of
l-th layer of k feature map for a node, respectively.

2) Multi-attributed Graph convolution
We define a graph convolution over its in-edge(s) as the
weighted sum over all the weights of its incoming edges:
f (in)
l,m,n,j = Φl,m,n · W l,m

·,j . Similarly, we define the graph
convolution over the out-edge(s) as f (out)

l,m,n,i = W l,m
i,· ·Ψl,m,n.

And thus, the directed edge-to-edge convolution is defined as
follows:

Zl+1,n
i,j = σ(

∑Ml

m=1
(f (in)
l,m,n,i + f (out)

l,m,n,j)) (14)

where W l+1,m
i,j refers to the m-th value in position i, j of

edge level feature map in the (l+1)-th layer.Ml refers to the
number of feature maps in the l-th layer. The two components
of the formula refer to direction filters as talked above. σ(·)
refers to activation function that can be set as linear, or ReLu
when the edge weights are assumed non-negative. The edge-
to-node convolution embeds each edge feature map into a
vector which encodes all the incoming and outgoing edges
of a node into a value from various combinations:

W 4,n
i = σ(

∑M3

m=1
(f (in)

3,m,n,i + f (out)
3,m,n,i)) (15)

where W 4,n
i ∈ Rn×1 denotes the i-th node (i.e. the 4th layer

in graph translator) in Figure 2 under n-th feature map.
After the edge-to-node convolution layer, each node is em-

bedded into a vector wi ∈ RM4×1 consisting of M4 features
and the whole graph is embedded as a matrix W ∈ RM4×n.
In this node level representation, we input the node states
vector X ∈ R1×n to concatenate matrix W and vector
X , generating the matrix W ∈ R(M4+1)×n as input of the
deconvolution part.

3) Multi-attributed Graph Deconvolutions
After graph encoder, it requires to deconvolute the node
representation back to target graph. This calls for a reverse
process of “edge-to-node convolution” as shown in Figure 2.
To achieve this, the node representation W l,k ∈ R1×n in l-th
layer in k-th feature map will be multiplied by the transpose
of incoming and outgoing kernels to obtain weighted adja-
cency matrix in the (l + 1)-th layer:

Zl+1,m
i,j =

∑M

k=1
σ([ΦT

l,k · Zl,k
j]i + [Zl,k

i · ΨT
l,k]j) (16)

where [·]i means the i-th element of a vector. The decoded
edges from node representation still encompasses highly-
ordered connectivity knowledge, which will be released and

VOLUME 4, 2016 9

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

translated back to the neighborhood of incident incoming and
outgoing edges by “edge-to-edge deconvolution”:

W l+1,m
i,j = σ([

∑n

k=1
ΦT

l,m·W l,m
k,j]i+[

∑n

k=1
Zl,m

i,k ·ΨT
l,m]j)

(17)
To ensure the generated graph is undirected, we still constrict
the weighted adjacent matrix is upper triangular matrix by
multiplying the output matrix W from last layer with a unit
upper triangular matrix O ∈ Rn×n.

B. MULTI-ATTRIBUTED GRAPH DISCRIMINATOR
Discriminator is used to identify whether the generated
graphs follow the same distribution of target graphs, which
encodes a second-order change between input and target
graphs. Different from DGT, we propose a multi-attributed
conditioned discriminator, as shown in Figure 2. The input
of the discriminator is multi-attributed graph tensorZ ∈
Rn×n×4, same as the input of generator. Specifically, the
input graph tensor and target graph are together inputted
into discriminator after being concatenated into a n × n × 5
tensor which can be considered as a 5-channel weighted
adjacency matrix of a multi-graph. Next, each of the channels
are mapped to its corresponding feature maps and then to
the separated edge-to-edge layers. The edge-to-node layer
is again applied to obtain node representations, which is
then mapped to graph embedding by a fully connected layer.
Finally, a softmax layer is implemented to distinguish the
generated graphs and target graphs. All the weights of filters
in the network are initialized and optimized through ADAM
optimization algorithm.
C. TIME AND MEMORY COMPLEXITY
Due to the similar convolution operations, the multi-
attributed graph generator and discriminator share same time
complexity. For generalization, we assume all the layers
(except input and output) have the same number of feature
maps as M0. S is the length of the fully connected layer. K
is the number of parameters. Then, the worst-case (i.e. when
the weighted adjacency matrix is dense) total complexity
is O((0.5n2M0(K + 1) + 2n2M2

0) + n2M2
0 + n2M0S),

where the first, second, and third terms are for the “edge-to-
edge convolutions”, “edge-to-node convolutions”, and fully
connected layers in conditional graph discriminator with
the indirect input matrix, respectively. Similarly, the total
memory complexity is O((4nM0 + 4.5n2M0) + 3nM0 +
(nM0S + 2S)) for all the “edge-to-edge convolutions”,
“edge-to-node convolutions”, and fully connected layers in
conditional graph discriminator. Compared to the analytical
solutions that needs large search time to determine the (sub-
)optimal solution, the MA-DGT requires training with the
graph topology and predicted information. However, predict-
ing at runtime is the main objective of this work and hence,
we compare the runtime analysis in this work and performing
online learning for MA-DGT is out of scope.

V. EXPERIMENTAL RESULTS
We present the evaluation of the malware epidemic control
with the aid of proposed stochastic control technique and

graph translation.

A. EXPERIMENTAL SETUP
The malware propagation performed in the experiments is
similar to that in [75], [76], [77], [78].
Network and Hardware Setup: A small-scale setup of
20 IoT nodes encompassing temperature sensors connected
with Intel ATLASEDGE board, Beagle Boards (BeagleBone
Blue) having ARM processor, communicating via Bluetooth
protocol are deployed as described in Section II-A in an area
of 5×5 m2 (in our lab). The deployed boards host RISC
architecture with embedded Linux OS running on them.
The devices are statically placed during the experiments.
The epidemic model predictive controller is executed on a
controller built on Intel Haswell core i5 processor.
Software Framework: On each device, i.e. at the node-
level, in order to extract the HPC information, Perf tool is
employed. It exploits perf_event_open function call in the
background to measure multiple events simultaneously. We
perform feature reduction using correlation extraction and
observe a limited number (four) of critical HPCs for malware
detection due to limited resource availability. We employ
JRip ML classifier for malware detection, similar to that in
[34], [36], which achieves an accuracy of 91.08% with 1
clock-cycle latency. This is also explained in Appendix -B.
The Python framework is utilized to develop graph transla-
tion.
Applications: We executed 3000 benign and malware appli-
cations for HPC data collection. Benign applications include
MiBench [79] and SPEC2006 [80], Linux system programs,
browsers, text editors, and word processor. For malware
applications, Linux malware is collected from virustotal.com
[74] and classified on virusshare.com [81]. Malware ap-
plications include Linux ELFs, python scripts, perl scripts,
and bash scripts, which are created to perform malicious
activities consisting of four classes of malware including 452
Backdoor, 350 Rootkit, 650 Virus, and 1169 Trojans. The
functionality of the deployed malware applications is: Back-
door applications try to provide remote access to the remote
user (attacker) and facilitates information leakage; Rootkit
applications provide the attackers with privilege even to mod-
ify the registers and authorized programs; Trojans perform
phishing of information stored in the system, and passwords;
self-duplicating Viruses and self-replicating worms that can
launch DoS attacks are deployed on the IoT nodes.

B. EVALUATION OF MALWARE EPIDEMIC CONTROL
We evaluate the performance of malware epidemic controller
discussed in Section III-B on the network with 20 nodes
deployed in our lab within a 5×5m2 area. 1000 experiments
are carried out with each experiment lasting for 40 seconds.
Devices in the network are affected by malware randomly
at any point of time, with multiple attacks on each of the
devices to replicate real-world scenario. At the initial time-
instant (t = 0), two nodes are deployed with self-propagating
malware. We evaluate the network performance in terms of
overall throughput, averaged over 1000 experiments.

10 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

1) Throughput with Time

0 5 10 15 20 25 30 35 40

Time (s)

0

2

4

6

8

10

12

14

16

T
hr

ou
gh

pu
t (

M
bp

s)

Upper bound
Average
Lower bound

Figure 3: Throughput with time (along with upper and lower
bounds)

The variation of throughput with time is presented in Fig-
ure 3. The lower bound and the upper bounds represent the
best-case and worst-case scenarios achieved by employing
the proposed malware epidemic model predictive controller
is shown here. One can observe that in most of the cases
(i.e. average) the proposed method achieves throughput close
to the upper bound. By employing, the proposed epidemic
model predictive controller, a throughput∼ 95% of the upper
bound is achieved in most of the experiments. This confirms
the effectiveness of the proposed malware confinement and
ensures the throughput is not hampered, irrespective of the
attack.

2) Throughput under Different Malware Properties

585
1

590

595

1

T
hr

ou
gh

pu
t (

M
bp

s)

600

Infection Rate

605

0.5

Recovery Rate

610

0.5

0 0

588

590

592

594

596

598

600

602

604

606

Figure 4: Network performance (throughput) with the infec-
tion rate and recovery rate

Figure 4 presents the overall network performance
(throughput) under different malware infection and recov-
ery rates. With the increase in recovery rate, the network
throughput increases and is highest at lower infection rate
and high recovery rate. However, the infection rate increase
hampers the overall throughput, and it has higher impact on
the throughput compared to recovery rate. It can be seen that

the right-most corner in Figure 4 i.e. high infection and high
recovery rate has slightly lower throughput compared to the
high recovery and low infection rate. This shows that runtime
malware detection and quarantining (recovering) is not the
panacea to have secure IoT networks, as infection (prop-
agation) has higher impact than recovery (quarantining).
Additional analysis with malware parameters is presented in
Appendix A.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time (s) 104

0

5

10

15

20

T
hr

ou
gh

pu
t

Imm. Disc.
After 1 Cyc.
No Disc.
Greedy1
Greedy2
Proposed

(a)

0 5 10 15 20 25 30 35 40
Time (s)

0

5

10

15

20

T
hr

ou
gh

pu
t (

M
bp

s) Proposed
Imm. Disc.
ND
Greedy 1
After 1 Cyc.
Greedy 2

(b)
Figure 5: Throughput with time when different malware con-
finement techniques are employed: (a) experiment executed
for nearly 12 hours to observe convergence; (b) zoom-in
snapshot.

3) Network Performance Comparison
Figure 5 presents the network performance (throughput) of
the proposed epidemic predictive controller based malware
confinement provided with real-time malware infection, state
of the nodes in the network, and the performance when
other heuristic methods are deployed in the IoT network as
a defense for malware propagation. The deployed heuristics
are: disconnect the node as soon as the malware is detected
(denoted as ‘Imm. Disc.’); disconnect the node after 1 cycle
of malware propagation (denoted as ‘After 1 cyc.’); no de-
fense in the network (‘ND’); greedy algorithms based on the
malware infection probability (‘Greedy 1’) i.e., disconnect

VOLUME 4, 2016 11

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

the node if malware is detected by HMD with a probability
higher than a threshold (0.75); and based on the degree of
infected node (‘Greedy 2’) i.e., disconnect infected node with
highest neighbors. Figure 5(a) shows the throughput w.r.t.
time executed for 12 hours. As seen the proposed technique
leads to a better convergence compared to other techniques.
It needs to be noted that the Figure 5 looks like plain bars,
however, it is not the case and has significant overlaps with
some other techniques. Figure 5(b) shows a zoom-in snapshot
of the throughput. One can observe that with the proposed
technique, the throughput remains close to the maximum
bound. The immediate disconnect and disconnecting the
node after one cycle achieve the next best throughput, respec-
tively. Similarly, the greedy 1 and no disconnect performs
worse, as the malware propagates through the network. The
greedy 2 i.e. disconnecting the infected node with highest
neighbors performs better than Greedy 1 indicating that
infection spreads much faster than quarantining the malware
and malware propagation has more impact on the overall
network throughput. The network throughput obtained for
the experiments deployed with various schemes is listed in
Table 1 with first row describing the scheme for malware
confinement, and the second row providing the overall net-
work throughput (Thr in Mbps). Nearly 200% throughput is
achieved compared to network without having any defense
for malware propagation defense. Similarly, up to 160% is
achieved with proposed malware epidemic control provided
with real-time infection data. Additionally, the number of in-
fected nodes with a probability more than 70% are averaged
for all the conducted experiments and presented third row
(#Inf.) of Table 1. It can be seen that the number of infected
nodes with proposed control mechanism is nearly 50% less
compared to the immediate disconnect, which has the second
best throughput compared to the proposed method.

Table 1: Network throughput and infected nodes (average)
under different malware confinement schemes

Technique Proposed Imm. disc. After 1 cycle No disc. Greedy 1 Greedy 2
Thr. (Mbps) 596.0528 460.9631 418.9087 182.143 310.6328 243.2209

Inf. 1.27 2.48 3.32 - 14.79 2.71

C. EVALUATION OF MALWARE STATE TRANSLATION
For the evaluation of MA-DGT, we use the network data (net-
work topology, state of nodes, infection rate, recovery rate,
and decay rate, network topology after deploying stochastic
controller) and the output of stochastic controller to train the
MA-DGT. The number of such data samples used are 343
with 200 of them used for training and the rest used for
testing. Furthermore, three datasets with different network
sizes (e.g. 40, and 20 termed as I, and II) are explored. The
number of feature maps in each of the layers of MA-DGT are
5− 10− 10− 10− 5− 1 in generator and 5− 10− 10− 20
in discriminator. The learning rate is chosen as 0.0001 for
both generator and discriminator and in the training process.
The mini batch for optimization is 20. All experiments are
conducted on a 64-bit machine with Nvidia GPU (GTX
1070,1683 MHz, 8 GB GDDR5). The model is trained by
ADAM optimization algorithm.

To evaluate the performance of the MA-DGT, we compare
the generated graphs to the label graphs (output of stochastic
controller) based on five graph property metrics. First, the
Accuracy is utilized to evaluate the ratio of edges that are
correctly predicted by computing the percentage of correctly
generated edges among all the possible edges. To measure
the edge weights which are continuous values, RMSE (root
mean squared error), R2 (coefficient of determination score),
Pearson and Spearman correlation are computed between
weights of generated and real target graphs. To validate the
superiority of the MA-DGT over other existing graph gen-
eration methods in deep learning domain, we conduct addi-
tional two comparison experiments on two models: 1) Graph-
VAE [82]: a probability-based graph generation method for
small graphs and 2) GraphRNN [83]: a recent graph gen-
eration method based on sequential generation with LSTM
model. The average evaluation results of the whole testing
samples are shown in Table 2

Table 2: Evaluation of proposed MA-DGT for malware epi-
demics for two network sizes

Dataset Method Accuracy RMSE R2 Pearson Spearman

II
GraphRNN 70.54% 44.15 0.44 0.29 0.24
GraphVAE 60.60% 49.09 0.73 0.16 0.17
MA-DGT 90.33% 21.51 0.13 0.81 0.86

I
GraphRNN 83.97% 42.13 0.16 0.23 0.19
GraphVAE 81.19% 45.92 0.39 0.32 0.35
MA-DGT 94.53% 23.45 0.63 0.80 0.79

As shown in Table 2, the MA-DGT outperforms the other
two methods in almost all the metrics. Specifically, in terms
of edge accuracy, the graph generation methods (GraphRNN
and GraphVAE) cannot handle the graph translation and got
low accuracy of around 60% at dataset II, and 80% at dataset
I, while MA-DGT achieves better results with accuracy of
90%. The MA-DGT outperforms the other two methods with
an average 76.8% superiority in RMSE, 60.1% in Pearson
correlation and 73.2% in Spearman correlation.

To further validate the effectiveness of the MA-DGT, we
show two cases for analysis in Figure 6. These two cases have
different parameters. Each line is a translation case consisting
of input graph, label or target graph and the generated graph.
The input graph has many connections and the after de-
infected process, some connections are deleted as shown in
label graphs. In this malware problem, the performance of
translation can be directly viewed from the topology com-
parison between labeled graphs and the generated graphs. In
Figure 6, each of the circles represent a node and the number
in the circle refers to node index. The edges 2-11, 2-13 and
7-14 are deleted in the labeled graph and this also happens
in the generated graph, while for both label and generated
graphs, the 6-15, 9-3, 10-3 edges remain in the translation
process. This validates that the translation process learns the
way of how to de-infected the malware circuits depending on
different parameters and nodes states.

Lastly, we evaluate the time and memory cost of the
proposed MA-DGT to determine the scalability of the tech-

12 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

 Input graph Label graph Generated graph

Figure 6: Two cases for malware state translation.

nique. It needs to be noted that we compare the inference
time of MA-DGT with the stochastic control technique.
Also, we compare the resource consumption with that of
the proposed stochastic control technique (Section III). The
time and memory consumption are depicted in Figure 7.
As the training of MA-DGT is performed offline, it can be
ignored in the given work based on the objective, however,
it has to be noted that the training of MA-DGT is inher-
ently expensive. Given the objective of this work, improving
learning convergence is out of scope of this work. It needs
to be noted that the stochastic technique does not require
training. Figure 7 presents the comparison of MA-DGT based
technique and stochastic optimization solution (represented
as ED - Epidemic controller) in terms of time and memory
consumption. One can observe that the time consumption and
memory requirements for MA-DGT based malware epidemic
control is smaller compared to the stochastic technique. How-
ever, for smaller networks (such as 20 nodes), the stochastic
optimization (EC) solutions outperform the MA-DGT, due
to the involved complexity in MA-DGT. Furthermore, one
can note that the memory requirements for MA-DGT are
nearly constant (irrespective of network size), whereas the
memory requirement grows exponentially for the stochastic
technique. This proves the ability to perform the malware
epidemic control for large scale networks using the proposed
MA-DGT effectively with training data obtained from the
stochastic controller.

0

1000

2000

3000

4000

5000

6000

7000

8000

0

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140 160 180

Time-MA-DGT

Time-EC

Memory-MA-DGT

Memory-EC

T
im

e
(s

)

M
em

o
ry

 (
M

B
)

Network size (# nodes)

Figure 7: Scalability of MA-DGT in time and memory cost
and comparison with stochastic technique (Testing phase)

VI. RELATED WORK

We differentiate the proposed work from state-of-the-art both
in terms of malware confinement and graph translation.

A. MALWARE CONFINEMENT IN IOT NETWORK:
COMPARISON WITH THE STATE-OF-THE-ART
Controlling epidemics or infection spreading is one of the
widely researched areas. A recent survey on controlling epi-
demics on networks [43] highlights the currently noticeable
gap in the literature needed to solve the problems we propose.
Specifically, the overwhelming majority of works that study
the theoretical containment or eradication of a disease or
malware only consider deterministic approximations of the
actual stochastic dynamics, and also only consider one-time
optimal resource allocation problems rather than real-time
feedback control strategies.

These relaxations to the problem arise from the inherent
complexity in networked epidemic systems: the stochastic
dynamics which describe the fundamental aspects of the
process entangle the components of the system’s state, mak-
ing their analysis difficult. This issue is typically addressed
by using a mean-field type approximation (see, e.g., [84]),
in which the random variables studied in the process are
assumed to be uncorrelated with each other across time.
This, in effect, assumes that the problems introduced by
entanglement have only a weak effect on the evolution of the
system, and as such, the resulting approximated probabilities
are representations of the statistics of the process itself.

The work in [44] presents a framework in which the
spreading infection (Worm) intends to kill the infected node
in order to refrain from getting killed and detected by the
defender. Despite effective, this work differs in terms of
considering both node-level and network-level attributes to
control the epidemic. Further, the assumption that malware
need to kill an infected node to minimize the spread is not
required in this work.

For sufficiently simple epidemic processes (see, e.g., [85])
the mean-field approach yields dynamics which provides an
upper-bound for the expectation of the stochastic process.
However, in general, this is not the case. Indeed, even for
simple models with multiple compartments, simulations have
shown standard mean-field approximations to be unreliable
proxies for the statistics of the underlying stochastic process
(see, e.g., [86]). Ultimately, most works that consider con-
taining or eradicating any type of spreading process on a
network finish with an analysis of the deterministic mean-
field approximation dynamics, and it remains unclear ex-
actly how this analysis connects to the original stochastic
dynamics. Unfortunately, we do not have this luxury as the
actual stochastic dynamics are what will ultimately drive the
spreading of the infection, meaning we must consider the
exact stochastic dynamics rather than an approximation. In-
stead, in this work we develop a tractable real-time stochastic
controller that can operate on the exact stochastic dynamics.
For IoT networks, techniques such as HoneyPot [87], de-
ception [88] are proposed. These techniques are effective in
detecting the malware or security breaches in the network by
luring the attackers to probe the decoys. However, they lack
a sophisticated mechanism to defend against attacks [89].

VOLUME 4, 2016 13

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

B. GRAPH TRANSLATION: COMPARISON WITH THE
STATE-OF-THE-ART
In recent years, there are emerging research works on neural
networks for graph learning, which has a wide range of ap-
plications, e.g. security, computer networks, bio-information
and social network connectivity determination [90], [48],
[91], [92], [93], [94], [95]. As one category of graph learning
domain, graph generation has attracted a great attention,
which is highly tailored to only address the graph generation
in specific type of applications such as molecule generation.
Generic graph generation can handle general graphs that are
not restricted to specific applications. Existing works all pro-
posed in the most recent year, which are based on VAE [82],
[96], generative adversarial nets (GAN) [97] and others [98],
[83]. Specifically, A graph net proposed by [98] generates
nodes and edges sequentially to form a whole graph, which is
sensitive to the generation order and time-consuming for the
large graphs. Works in [82] and [96] are all new variational
autoencoders in parallel for whole graph generation, though
they typically only handle very small graphs (e.g., with ≤ 50
nodes) and cannot scale well in both memory and runtime for
large graphs. Different from the above methods, GraphRNN
represents graphs as sequences using different node ordering,
and then builds an autoregressive generative model on these
sequences with LSTM model.

A new graph learning problem “graph translation” is ini-
tially proposed in [48]. In real-world applications, rare events
such as catastrophic events and cyber-attacks only occurred
in few locations (can be treated as different local networks),
but all the other locations without historical rare event occur-
rence also need the capability of early detection and reaction.
Therefore, it is highly desirable to learn the shared pattern of
rare events in those locations with historical rare events, and
then proactively synthesize the event occurrence situations
exclusive to all the other locations. Graph translation prob-
lem aims to learn and transfer the shared complex patterns
across different networks with different structures and sizes.
However, in the GT-GAN (Graph Translation Generative Ad-
versarial Network) proposed by [48], the translation process
only depends on the topology of the input graph and does not
consider the node attributes of the input graphs. Whereas, in
our problem, the translation process depends not only on the
graph topology, but also depends on the node attributes and
controlling parameters(e.g. inference rate, reconstruction rate
and decay rate). To deal with this problem, we propose the
MA-DGT (Multi-Attributed Deep Graph Translation), which
is a novel deep graph translation structure considering the
node attribute and translation parameters.

VII. CONCLUSION
A single compromised node in an IoT network can infect
other nodes in the network, as a consequence of malware
spread. The existing works on malware confinement are
either too theoretical or does not have any malware detection
strategy nor considers true infection state of the nodes. In
contrast, in this work we propose a novel practical solution

for securing IoT networks against malware epidemics. To
this aim, a lightweight runtime malware detector is deployed
on IoT nodes for detecting malware with high accuracy.
Unfortunately, since the malware detection algorithms are
not perfect, their outputs cannot be immediately used in theo-
retical optimal control problems. Instead, we use the outputs
of malware detector to generate probabilistic outputs about
the infection state rather than binary deterministic ones that
can be used (with small modifications) in a rolling horizon
optimal control algorithm. The epidemic model predictive
controller considers the network connectivity, estimated in-
fection state of the nodes, performance requirements of the
network and performs a stochastic optimization to minimize
the infection spread in the network while limiting the losses
to the network performance. The deployed malware detector
achieves a malware detection accuracy of ∼92% on average.
The proposed malware epidemic control method achieves
a throughput of up to 160% compared to heuristic based
approaches. Furthermore, for the purpose of scalability, a
Multi-attributed graph translation technique is proposed.

References
[1] A. K. Sikder et al., “A survey on sensor-based threats to internet-of-things

(IoT) devices and applications,” CoRR, vol. abs/1802.02041, 2018.
[2] A. Mosenia and N. K. Jha, “A comprehensive study of security of

internet-of-things,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 4, pp. 586–602, Oct 2017.

[3] T. Abera et al., “Things, trouble, trust: On building trust in iot systems,”
in ACM/EDAC/IEEE Design Automation Conference (DAC), 2016.

[4] J. Wurm et al., “Security analysis on consumer and industrial iot devices,”
in Asia and South Pacific Design Automation Conference (ASP-DAC),
Jan 2016.

[5] S. Koley and P. Ghosal, “Addressing hardware security challenges in
internet of things: Recent trends and possible solutions,” in IEEE Inter-
national Conference on Ubiquitous Intelligence and Computing, 2015.

[6] K. Yang et al., “Protecting endpoint devices in iot supply chain,” in
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), Nov 2015, pp. 351–356.

[7] T. Xu et al., “Security of IoT systems: Design challenges and opportu-
nities,” in IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD),
Nov 2014.

[8] M. Labs, “Infographic: Mcafee labs threats report,” Nov 2018.
[9] S. Cheng et al., “Traffic-aware patching for cyber security in mobile IoT,”

IEEE Communications Magazine, vol. 55, no. 7, pp. 29–35, July 2017.
[10] M. B. Barcena and C. Wueest, “Insecurity in the internet of things,”

Whitepaper, Apr 2015.
[11] S. Shukla et al., “Stealthy malware detection using rnn-based automated

localized feature extraction and classifier,” in IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI), 2019.

[12] S. Shukla et al., “Rnn-based classifier to detect stealthy malware using lo-
calized features and complex symbolic sequence,” in IEEE International
Conference on Machine Learning and Applications (ICMLA), 2019.

[13] J. Granjal et al., “Security for the internet of things: A survey of existing
protocols and open research issues,” IEEE Communications Surveys
Tutorials, vol. 17, no. 3, pp. 1294–1312, Jan 2015.

[14] P. Chen et al., “Decapitation via digital epidemics: a bio-inspired trans-
missive attack,” IEEE Communications Magazine, vol. 54, no. 6, pp. 75–
81, June 2016.

[15] Kaspersky, “Attacks with exploits: From everyday threats to
targeted campaigns,” White Paper, pp. 1–12, 2017. [Online].
Available: {https://media.kaspersky.com/en/business-security/enterprise/
KL_Report_Exploits_in_2016_final.pdf}

[16] T. Wang et al., “A secure IoT service architecture with an efficient balance
dynamics based on cloud and edge computing,” IEEE Internet of Things
Journal, vol. 6, no. 3, pp. 4831–4843, 2018.

[17] C. Miao et al., “Privacy-preserving truth discovery in crowd sensing
systems,” ACM Trans. Sen. Netw., vol. 15, no. 1, Jan 2019.

14 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

[18] M. Z. A. Bhuiyan et al., “Maintaining the balance between privacy
and data integrity in internet of things,” in International Conference on
Management Engineering, Software Engineering and Service Sciences,
2017.

[19] T. Wang et al., “Preserving balance between privacy and data integrity in
edge-assisted internet of things,” IEEE Internet of Things Journal, vol. PP,
pp. 1–1, 2019.

[20] M. H. R. Khouzani et al., “Optimal Control of Epidemic Evolution,” in
IEEE INFOCOM, no. i, Shanghai, China, 2011.

[21] A. Dinaburg et al., “Ether: Malware analysis via hardware virtualization
extensions,” in ACM Conference on Computer and Communications
Security, 2008.

[22] G. Gu et al., “BotHunter: Detecting malware infection through ids-driven
dialog correlation,” in USENIX Security Symposium, 2007.

[23] Y. Fan et al., “Gotcha - sly malware!: Scorpion a metagraph2vec based
malware detection system,” in ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2018.

[24] M. Ozsoy et al., “SIFT: A low-overhead dynamic information flow
tracking architecture for SMT processors,” in ACM Int. Conference on
Computing Frontiers, 2011.

[25] H. Yin et al., “Panorama: Capturing system-wide information flow for
malware detection and analysis,” in ACM Conference on Computer and
Communications Security, 2007.

[26] E. J. Schwartz et al., “All you ever wanted to know about dynamic taint
analysis and forward symbolic execution (but might have been afraid to
ask),” in IEEE Symposium on Security and Privacy, 2010.

[27] T. Garfinkel and M. Rosenblum, “A virtual machine introspection based
architecture for intrusion detection,” in Network and Distributed Systems
Security Symposium, 2003.

[28] M. Ozsoy et al., “Malware-aware processors: A framework for efficient
online malware detection,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2015.

[29] M. Christodorescu et al., “Mining specifications of malicious behavior,”
in ACM SIGSOFT Symposium on The Foundations of Software Engi-
neering, 2007.

[30] R. Sekar et al., “A fast automaton-based method for detecting anomalous
program behaviors,” in IEEE Symposium on Security and Privacy, 2001.

[31] M. Kayaalp et al., “SCRAP: Architecture for signature-based protection
from code reuse attacks,” in IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2013.

[32] K. Shen et al., “Hardware counter driven on-the-fly request signatures,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems, 2008.

[33] A. A. Elhadi et al., “Malware detection based on hybrid signature be-
haviour application programming interface call graph,” American Journal
of Applied Sciences, vol. 9, no. 3, p. 283, 2012.

[34] N. Patel et al., “Analyzing hardware based malware detectors,” in
ACM/IEEE Design Automation Conf., 2017.

[35] J. Demme et al., “On the feasibility of online malware detection with
performance counters,” SIGARCH Comput. Archit. News, vol. 41, no. 3,
pp. 559–570, June 2013.

[36] H. Sayadi et al., “Ensemble learning for effective run-time hardware-
based malware detection: A comprehensive analysis and classification,”
in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
June 2018, pp. 1–6.

[37] P. D. S. Manoj et al., “Adversarial attack on microarchitectural events
based malware detectors,” in Design Automation Conference (DAC),
2019.

[38] E. Ronen et al., “IoT goes nuclear: Creating a zigbee chain reaction,” in
IEEE Symposium on Security and Privacy (SP), 2017.

[39] B. Singh et al., “On the detection of kernel-level rootkits using hardware
performance counters,” in ACM on Asia Conference on Computer and
Communications Security, 2017.

[40] A. Vashist et al., “Indoor wireless localization using consumer-grade 60
ghz equipment with machine learning for intelligent material handling,”
in International Conference on Consumer Electronics (ICCE), 2020.

[41] Y. LeCun et al., “Deep learning,” nature, vol. 521, no. 7553, p. 436, 2015.
[42] P. Isola et al., “Image-to-image translation with conditional adversarial

networks,” arXiv preprint, 2017.
[43] C. Nowzari et al., “Analysis and control of epidemics: A survey of spread-

ing processes on complex networks,” IEEE Control Systems, vol. 36,
no. 1, pp. 26–46, Feb 2016.

[44] V. Karyotis and M. Khouzani, “Optimal control based techniques,” in
Malware Diffusion Models for Wireless Complex Networks. Morgan
Kaufmann, 2016, pp. 139 – 154.

[45] K. Drakopoulos et al., “An efficient curing policy for epidemics on
graphs,” in IEEE Conference on Decision and Control, 2014.

[46] K. Drakopoulos et al., “An Efficient Curing Policy for Epidemics on
Graphs,” IEEE Transactions on Network Science and Engineering, vol. 1,
no. 2, pp. 67–75, 2014.

[47] N. J. Watkins et al., “Inference, Prediction, and Control of Networked
Epidemics,” in IEEE American Control Conference, 2017.

[48] X. Guo et al., “Deep graph translation,” arXiv preprint arXiv:1805.09980,
2018.

[49] K. Khasawneh et al., “Ensemble learning for low-level hardware-
supported malware detection,” in Research in Attacks, Intrusions, and
Defenses, 2015.

[50] P. Rost et al., “Network slicing to enable scalability and flexibility in 5g
mobile networks,” IEEE Communications Magazine, vol. 55, no. 5, pp.
72–79, May 2017.

[51] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free
networks,” Phys. Rev. Lett., vol. 86, pp. 3200–3203, Apr 2001.

[52] E. Valdano et al., “Epidemic Threshold in Continuous-Time Evolving
Networks,” Physical Review Letters, vol. 120, no. 6, p. 068302, Feb 2018.

[53] D. Chakrabarti et al., “Epidemic thresholds in real networks,” ACM
Trans. Inf. Syst. Secur., vol. 10, no. 4, pp. 1:1–1:26, Jan 2008.

[54] Y. Wang et al., “Epidemic spreading in real networks: an eigenvalue
viewpoint,” in International Symposium on Reliable Distributed Systems,
2003.

[55] (2013) badbios. Last accessed: 07-Aug-2018. [Online].
Available: https://arstechnica.com/information-technology/2013/10/
meet-badbios-the-mysterious-mac-and-pc-malware-that-jumps-airgaps/

[56] (2007) Yankee doodle. Last accessed: 07-Aug-2018. [On-
line]. Available: https://www.symantec.com/security-center/writeup/
2000-121914-2303-99

[57] (2017) Magneto. Last accessed: 07-Aug-2018. [Online]. Available:
https://magento.com/security/tag/malware

[58] G. H. Weiss and M. Dishon, “On the asymptotic behavior of the stochastic
and deterministic models of an epidemic,” Mathematical Biosciences,
vol. 11, no. 3, pp. 261–265, 1971.

[59] R. H. Norden, “On the distribution of the time to extinction in the
stochastic logistic population model,” Advances in Applied Probability,
vol. 14, no. 4, pp. 687–708, 1982.

[60] R. J. Kryscio and C. Lefévre, “On the extinction of the SIS stochastic
logistic epidemic,” Journal of Applied Probability, pp. 685–694, 1989.

[61] D. Acarali et al., “Modelling the spread of botnet malware in iot-based
wireless sensor networks,” Security and Communication Networks, pp.
1–13, Feb 2019.

[62] A. Kumar and T. J. Lim, “Edima: Early detection of iot malware network
activity using machine learning techniques,” in IEEE World Forum on
Internet of Things (WF-IoT), 2019.

[63] M. Bloem et al., “Optimal and robust epidemic response for multiple
networks,” Control Engineering Practice, vol. 17, pp. 525–533, 2009.

[64] A. Khanafer and T. Basar, “An optimal control problem over infected
networks,” in Proceedings of the International Conference of Control,
Dynamic Systems, and Robotics, Ottawa, Ontario, Canada, 2014.

[65] S. Eshghi et al., “Optimal patching in clustered epidemics of malware,”
IEEE Transactions on Networking, 2015, to appear.

[66] W. K. Chai, “Modelling spreading process induced by agent mobility
in complex networks,” IEEE Transactions on Network Science and
Engineering, vol. PP, pp. 1–1, 2017.

[67] L.-X. Yang et al., “The impact of patch forwarding on the prevalence of
computer virus: A theoretical assessment approach,” Applied Mathemat-
ical Modelling, vol. 43, pp. 110 – 125, 2017.

[68] N. J. Watkins et al., “Robust economic model predictive control of
continuous-time epidemic processes,” ArXiv e-prints, July 2017.

[69] A. Lundell, Transformation techniques for signomial functions in global
optimization. Åbo Akademi University, 2009.

[70] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, Mar 2014.

[71] J. Nocedal and S. Wright, Numerical optimization. Springer Science &
Business Media, 2006.

[72] P. H. J. Nardelli et al., “Efficiency of wireless networks under different
hopping strategies,” IEEE Transactions on Wireless Communications,
vol. 11, no. 1, pp. 15–20, Jan 2012.

VOLUME 4, 2016 15

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

[73] H. J. N. Pedro et al., “Throughput maximization in multi-hop wireless
networks under a secrecy constraint,” Computer Networks, vol. 109,
no. 1, pp. 13 – 20, Nov 2016.

[74] (2018) Virustotal intelligence service. Last accessed: 07-Aug-2018.
[Online]. Available: www.virustotal.com/intelligence

[75] L. Feng et al., “Dynamical analysis and control strategies on malware
propagation model,” Elsevier Journal of Applied Mathematical Mod-
elling, vol. 37, no. 16-17, pp. 8225–8236, 2013.

[76] Z. Chen and C. Ji, “Spatial-temporal modeling of malware propagation
in networks,” IEEE Transactions on Neural Networks, vol. 16, no. 5, pp.
1291–1303, 2005.

[77] C. Fleizach et al., “Can you infect me now?: malware propagation in
mobile phone networks,” in ACM workshop on Recurring Malcode,
2007.

[78] S. Hosseini et al., “Malware propagation modeling considering software
diversity and immunization,” Elsevier Journal of computational science,
vol. 13, pp. 49–67, Mar 2016.

[79] M. R. Guthaus et al., “MiBench: A free, commercially representative em-
bedded benchmark suite,” in IEEE International Workshop on Workload
Characterization, 2001.

[80] J. L. Henning, “SPEC CPU2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep 2006.

[81] (2018) Virusshare team. Last accessed: 07-Aug-2018. [Online].
Available: www.virusshare.com

[82] M. Simonovsky and N. Komodakis, “Graphvae: Towards genera-
tion of small graphs using variational autoencoders,” arXiv preprint
arXiv:1802.03480, 2018.

[83] J. You et al., “Graphrnn: Generating realistic graphs with deep auto-
regressive models,” in International Conference on Machine Learning,
2018, pp. 5694–5703.

[84] P. Van Mieghem et al., “Virus Spread in Networks,” IEEE/ACM Transac-
tions on Networking, vol. 17, no. 1, pp. 1–14, Feb 2009.

[85] P. Simon and I. Z. Kiss, “On bounding exact models of epidemic spread
on networks,” arXiv preprint, pp. 1–18, Apr 2017.

[86] N. J. Watkins et al., “Optimal resource allocation for competitive spread-
ing processes on bilayer networks,” IEEE Transactions on Control of
Network Systems, vol. 5, no. 1, pp. 298–307, 2018.

[87] D. Fraunholz et al., “An adaptive honeypot configuration, deployment
and maintenance strategy,” in Int. Conf. on Advanced Communication
Technology, 2017.

[88] V. E. Urias et al., “Gathering threat intelligence through computer net-
work deception,” in IEEE Symposium on Technologies for Homeland
Security (HST), 2016.

[89] Smokescreen, “7 deadly sins âĂŞ how to fail at implementing
deception technology,” 2018, https://www.smokescreen.io/
7-deadly-sins-how-to-fail-at-implementing-deception-technology/.

[90] L. Holder et al., “Graph-based relational learning with application to
security,” Fundamenta Informaticae, vol. 66, no. 1-2, pp. 83–101, 2005.

[91] M. J. Kusner et al., “Grammar variational autoencoder,” arXiv preprint
arXiv:1703.01925, 2017.

[92] R. Gómez-Bombarelli et al., “Automatic chemical design using a data-
driven continuous representation of molecules,” ACS central science,
vol. 4, no. 2, pp. 268–276, 2018.

[93] H. Dai et al., “Syntax-directed variational autoencoder for molecule
generation,” in International Conference on Machine Learning, 2018.

[94] W. Jin et al., “Junction tree variational autoencoder for molecular graph
generation,” arXiv preprint arXiv:1802.04364, 2018.

[95] S. Cavallari et al., “Learning community embedding with community
detection and node embedding on graphs,” in ACM Conference on
Information and Knowledge Management, 2017, pp. 377–386.

[96] B. Samanta et al., “Designing random graph models using variational
autoencoders with applications to chemical design,” arXiv preprint
arXiv:1802.05283, 2018.

[97] A. Bojchevski et al., “Netgan: Generating graphs via random walks,”
arXiv preprint arXiv:1803.00816, 2018.

[98] Y. Li et al., “Learning deep generative models of graphs,” arXiv preprint
arXiv:1803.03324, 2018.

[99] A. Azmoodeh et al., “Robust malware detection for internet of (battle-
field) things devices using deep eigenspace learning,” IEEE Transactions
on Sustainable Computing, vol. 4, no. 1, pp. 88–95, Jan 2019.

[100] E. Ronen and A. Shamir, “Extended functionality attacks on IoT devices:
The case of smart lights,” in IEEE European Symposium on Security and
Privacy, 2016.

[101] T. Yu et al., “Handling a trillion (unfixable) flaws on a billion devices: Re-
thinking network security for the internet-of-things,” in ACM Workshop
on Hot Topics in Networks, 2015.

[102] Z. K. Zhang et al., “IoT security: Ongoing challenges and research
opportunities,” in IEEE International Conference on Service-Oriented
Computing and Applications, 2014.

[103] A. Garcia-Serrano, “Anomaly detection for malware identification using
hardware performance counters,” CoRR, vol. abs/1508.07482, 2015.

[104] A. Tang et al., “Unsupervised anomaly-based malware detection using
hardware features,” in Research in Attacks, Intrusions and Defenses,
2014.

[105] M. B. Bahador et al., “HPCMalHunter: Behavioral malware detection
using hardware performance counters and singular value decomposition,”
in International Conference on Computer and Knowledge Engineering
(ICCKE), 2014.

[106] X. Wang et al., “Hardware performance counter-based malware identi-
fication and detection with adaptive compressive sensing,” ACM Trans.
Archit. Code Optim., vol. 13, no. 1, pp. 3:1–3:23, Mar 2016.

16 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

A. APPENDIX

MOTIVATIONAL CASE STUDIES

We perform case study to evaluate the need for malware con-
finement at the network-level and deploying multi-attributed
deep graph translation to highlight the security risk in IoT
networks.

A. IMPACT OF MALWARE CONFINEMENT ON
THROUGHPUT IN IOT NETWORK

We investigate the impact of malware propagation on the
network performance if no malware confinement strategy is
deployed. To evaluate the impact of malware propagation
on network performance (throughput), we consider a small-
scale IoT network of 20 nodes with no restriction on malware
propagation enforced. The throughput of each node is set
to be 1 Mbps. We assume the malware infection model for
IoT devices as Susceptible-Infected-Susceptible (SIS). More
details on infection model are presented in Section II-B.

0 2 4 6 8 10 12 14 16 18
Time (s)

0

2

4

6

8

10

12

14

16

18

T
hr

ou
gh

pu
t (

M
bp

s)

Throughput

Figure 8: Throughput with time for the IoT network of 20
nodes, but without any malware confinement strategy

In a SIS model, an IoT node is susceptible to infection
(malware attack), and can be recovered from infection after
certain time i.e. malware can be quarantined and the node
is again susceptible for future infections. The impact of
malware propagation on the network throughput is depicted
in Figure 8. As seen, if no defense mechanism for malware
containment is deployed, all the nodes in the network eventu-
ally gets infected, reducing the network throughput (to zero
at some time instants). It needs to be noted that the observed
increase in throughput is due to the considered SIS model
i.e. a node recovers from infection after quarantining. This
shows that an effective malware epidemic control has to be
deployed to maintain the network performance. For this case
study, the infection rate is 0.3 with a recovery rate of 0.1.
These parameters are chosen based on the observed infection
and recovery rates for the employed virus samples. However,
it is observed that the trend of network throughput is same
for all the different experimented malware. More details on
experimental setup are in Section V-A.

B. NEEDS OF CONVOLUTION OPERATIONS ON
DYNAMIC AND ARBITRARY GRAPH STRUCTURES
Existing deep learning models for the translation of data [42]
(e.g. image data, audio and text) assumes the data structure is
fixed before and after the translation. For instance, in case
of the image translation, only the intensity of pixels vary,
whereas the pixel properties such as the number of neighbor-
ing pixels are retained, as shown in Figure 9(a). However,
in the problem of malware propagation in IoT networks,
there are substantial differences: 1) the graph topology and
connectivity are highly flexible, as shown in Figure 9(b).
And hence, the deep learning models designed based on
convolution operations on grids (such as images) are not
directly applicable to IoT network problem. 2) Further, in
graph translation problem, both the nodes’ statuses and the
connectivity structure among the nodes change, as shown in
Figure 9(b), while in image translation, the node connectivity
structure is always fixed, as shown in Figure 9(a). Hence,
new methodologies are imperative for graph translation that
predicts both node status as well as node connectivity is
needed.

Figure 9: Translation on graph-structured data requires dif-
ferent convolution operations. (a) In image translation, the
connectivity among nodes is always grid-structure and will
not change. (b) In multi-attributed graph translation problem,
the connectivity among nodes can be any generic graph and
can change before and after the translation.

HARDWARE-ASSISTED RUNTIME MALWARE
DETECTION
To perform effective node-level malware detection in IoT
network, we adopt a lightweight, hardware-assisted malware
detection technique (HMD) recently proposed in [34], [36].
We briefly describe the adopted technique below.

C. OVERVIEW OF HARDWARE-ASSISTED MALWARE
DETECTION
The general overview of deployed malware detector (HMD),
depicted in Figure 10, adopted from [34], [36]. It comprises
of feature selection, and runtime malware detection stages.
Feature selection is performed offline, and malware detection
is performed online.

1) Feature Selection

For runtime malware detection, we employ HPC traces in
this work. To alleviate hardware overhead and facilitate run-
time malware detection irrelevant data (unneccessary HPC
features) is identified and removed using a feature reduction
algorithm and as such only a subset of HPCs that represent
the most critical features required for malware detection are

VOLUME 4, 2016 17

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

Applications

(Malware and Benign)

Feature

Extraction

Capturing

HPCs via

Perf Tool

Feature

Reduction

ML

Classifiers

(JRip)

Correlation Analysis

& Attribute Evaluation

Feature Scoring

HPCs

Malware

Benign

Benign

Malware

Figure 10: Overview of adopted runtime malware detector
HMD

selected. This feature selection process is performed offline
to determine the most critical microarchitectural events to be
captured by the limited available HPCs.

We collected 44 possible diverse microarchitectural events
using the available HPCs for the employed IoT devices by
repeating the experiments multiple times. As the maximum
number of HPCs that can be collected in one iteration is
limited to number of available on-chip HPCs (4 in the em-
ployed hardware), we ran experiments multiple iterations to
obtain all the 44 HPCs. Further, we apply a feature reduction
technique to determine the critical HPC events. For feature
reduction, we apply “Correlation Attribute Evaluation” to
rank the most critical HPC events. Correlation evaluation
algorithm calculates the Pearson correlation coefficient be-
tween each attribute and class, as given below.

ρ(i) =
cov(Zi, C)√
var(Zi) var(C)

i = 1, ..., 44 (18)

where ρ is the Pearson correlation coefficient. Zi is the input
dataset of event i (i = 1, . . . , 44). C is the output dataset
containing labels, i.e. “Malware” or “Benign” in our case.
The cov(Zi, C) measures the covariance between input data
and output data. The var(Zi) and var(C) measure variance
of both input and output datasets, respectively. Based on the
ranking of ρ, top 8 features are selected for analysis, given in
Table 3. The features are ranked based on their importance
and relevance to the target variable through the feature scor-
ing process. The reduced set of prominent features include
HPCs representing pipeline front-end, pipeline back-end,
cache subsystem, and main memory behaviors which are
influential in the performance of standard applications.

Table 3: Microarchitectural (HPC) events of high priority for
runtime malware detection

Rank Event name Rank Event name
1 Branch Instructions 5 dTLB_store_misses
2 Branch Loads 6 LLC_prefetch_misses
3 iTLB_load_misses 7 L1_dache_stores
4 dTLB_load_misses 8 cache_misses

Depending on the available number of HPCs, these se-
lected features or events are monitored online on the IoT
devices and are provided to the deployed ML classifier to
classify and detect malware from benign applications, as
described below.

2) Malware Detection by ML Classifiers

Once the key features are selected, they are used to train the
ML classifiers in the HMD. For evaluation, we experimented
various ML classifiers and compare them in terms of malware
detection accuracy, hardware overhead, power consumption,
and the time required to detect malware (latency). The run-
ning application is profiled every 1ms i.e. non-trivial HPCs
are collected continuously at 1ms interval and fed to the ML
classifier. A k-fold (k=10) validation is employed in this work
for evaluating and comparing the malware detection accuracy
of different classifiers. The ML classifiers are trained with the
non-trivial HPCs and is performed offline.

For the inference and runtime malware detection, the crit-
ical HPCs listed in Table 3 are captured during application
execution and provided as input to the ML classifiers. Based
on the derived model in the training phase, the ML classifiers
provide information regarding the existence of malware. As
the malware detection is performed on individual nodes, it is
independent of the network topology. The deployed epidemic
controller for malware confinement requires an estimate of
infection rather than deterministic infection state of the node,
the HMD’s output will be fed to the epidemic controller.

Based on these experimental evaluations (presented in
-D), HMD employing JRip ML classifier that has rel-
atively smaller area (80× lower than neural network
(MLP)), lower latency (1 clock-cycle) for malware detec-
tion is deployed on the IoT devices in this work. We would
like to emphasize that HMD is not a contribution of this work
nor the proposed malware confinement is limited by HMD.
As the devices we experimented in this work host HPCs,
we adopted this methodology. However, depending on the
configuration of IoT devices, one can adopt other techniques
such as [99]. The critical part is to employ a node-level
malware detector whose information (malware estimates) can
be fed to the proposed malware confinement solution.

D. EVALUATION OF ADOPTED MALWARE DETECTION
We evaluate the deployed HMD with different ML classifiers
in terms of malware detection accuracy, resource consump-
tion, and processing overheads to verify the suitability for
runtime malware detection on IoT devices. A 10-fold cross-
validation is used to verify the performance of malware de-
tection with reduced features. For the detection accuracy, we
calculate the percentage value of samples that are correctly
classified. The experimental setup is same as that described
in the earlier section.

Table 4 presents the 10-fold validation of the HMD’s per-
formance and the silicon overhead incurred by the malware
detector that employs 4 HPCs. As the software implementa-
tion of ML classifiers for malware detection is slow, in the
range of tens of milliseconds which is an order of magnitude
higher than the latency needed to capture malware at runtime
[34], hardware implementation is performed in this work.
The deployed HMD’s hardware footprint is evaluated on
a FPGA for a fair comparison, as the experimented het-

18 VOLUME 4, 2016

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

Table 4: Evaluation of different ML classifiers when de-
ployed in HMD using 4 HPCs

Classifier Accuracy Area Power Latency F1-score(%) (%) (mW) (@10ns)
MLP 93.03 41.5 0.78 93 0.93
JRip 91.08 0.2 0.28 1 0.92

Logistic Reg. 92.21 19.9 0.55 58 0.92
SVM 81.55 4.1 0.42 13 0.82
J48 92.62 0.9 0.26 3 0.93

SGD 92.21 4.1 0.39 13 0.92

erogeneous IoT devices have different hardware resources
available. We use Vivado HLS compiler to develop the
HDL implementation of the classifiers (HMD) and deploy
on Xilinx Virtex 7 FPGA. FPGA is a target in our study, as
few modern microprocessors have on-chip FPGAs available
for programmable logic implementation. Such arrangement
makes it feasible to implement reprogrammable low-level
malware detection logic (ML model) which can detect mal-
ware by reading the CPU HPCs through the shared memory
bus. Latency unit is represented in terms of the number of
clock cycles (cycles @10 ns) required to classify input vector.
In order to compare the area overhead of the implemented
hardware-based ML classifiers, we consider the OpenSPARC
implementation as a reference and calculate the area over-
head relative the core size. The area is a function of total
number of utilized LUTs, FFs, and DSP units inside Virtex 7
FPGA.

One can observe from Table 4, that among all the exper-
imented classifiers, complex techniques such as multi-layer
perceptron (MLP) i.e. neural network delivers the highest
performance of 93.03%, but incurs a large area overhead and
delays. To be able to accommodate on IoT devices, we per-
form malware detection with small footprint and overhead,
yet obtaining a good accuracy. we chose and deploy JRip
based HMD on each of the nodes for malware detection. It
needs to be noted that the underlying system architecture
(instruction set and pipeline) is not modified, rather a separate
unit that utilizes existing architecture is designed.

E. MALWARE DETECTION AT NODE-LEVEL:
COMPARISON WITH THE STATE-OF-THE-ART
Detection of malware with software based approaches (in-
cluding off-the-shelf anti-virus) technique have set backs of
are large runtime, inefficient detection based on signature,
and complexity which makes it an unattractive solution for
IoT networks [100], [101], [102]. In response, hardware-
based malware detection is proposed, which will be reviewed
here. The work in [35] was the first study that proposed to
utilize the HPC data for malware detection and demonstrated
the effectiveness of offline machine learning algorithms in
malware classification. They showed high detection accuracy
results for Android malware by applying complex ML al-
gorithms, namely Artificial Neural Network (ANN) and K-
Nearest Neighbor (KNN). This work lacks runtime malware
detection, and mostly applicable for larger systems due to
the resource consumption of the employed classifier and the

number of HPCs used.
The researchers in [103] and [104] discussed the feasibility

of employing unsupervised learning method on low-level
features to detect Return-oriented programming (ROP) and
buffer overflow attacks by finding an anomaly in the hard-
ware performance counters’ information. Although unsuper-
vised algorithms are more effective in detecting new malware
and attacker evolution, they are complex in nature demanding
more sophisticated analysis, computational overheads. In a
different study [28], Ozsoy and et al., used sub-semantic
features to detect the malware. Additionally, they suggested
changes in microprocessor pipeline to detect malware in truly
real-time nature. The discussed computational and process-
ing overheads are too high to be adopted for IoT devices.
Additionally, changing microprocessor pipeline for IoT de-
vices is not a cost-effective solution. In contrast, adopted
HMD does not require any change in processor pipeline and
lightweight in nature. The work in [105] collected hardware
performance counters to construct support vector machine
(SVM) detectors to identify malicious programs in real-time.
The SVMs are heavy-weight classifiers and incurs heavy
computational overheads, making them not a good option
to be deployed on IoT devices. In contrast, we employ a
simple ML classifier with less number of HPCs for malware
detection.

The work in [49] uses logistic regression to classify mal-
ware into multiple classes and trained a specialized classifier
for detecting malware class. They further used specialized
ensemble learning to improve the accuracy of logistic regres-
sion. Despite good accuracy, the computational overheads
posed are high, and employs large number of HPCs for
classification. One of the recent works [106] uses “sample-
locally-analyze-remotely” technique, where the HPCs are
collected locally, but analyzed on a server. Compressed sens-
ing is utilized to minimize the communication bandwidth.
This technique though mitigates the on-chip processing over-
heads, the communication costs are still high for IoT devices
and is not effective for IoT networks, as the malware prop-
agation in network is faster than the time to communicate
with the sever. In contrast to the existing works, the deployed
malware detector in this work employs one single lightweight
ML classifier (‘JRip’), employing limited number of HPCs,
with low computational overheads, and suitable for runtime
malware detection. Most importantly, the utilized malware
detector [34] is devised in order to suit the needs of IoT
devices.

A. MALWARE PROPAGATION EVALUATION
Throughput with Malware Propagation

Figure 4 presents the overall network performance
(throughput) under different malware infection and recov-
ery rates. With the increase in recovery rate, the network
throughput increases and is highest at lower infection rate
and high recovery rate. However, the infection rate increase
hampers the overall throughput, and it has higher impact on
the throughput compared to recovery rate. It can be seen that

VOLUME 4, 2016 19

S. Manoj et al.: Cognitive and Scalable Technique for Securing IoT Networks Against Malware Epidemics

the right-most corner in Figure 4 i.e. high infection and high
recovery rate has slightly lower throughput compared to the
high recovery and low infection rate. This shows that runtime
malware detection and quarantining (recovering) is not the
panacea to have secure IoT networks, as infection (propaga-
tion) has higher impact than recovery (quarantining).
Throughput with Malware Threat Level

I=0.1 I=0.3 I=0.5 I=0.7 I=0.9

Low threat level High threat level

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 11: Overall network throughput when nodes are de-
ployed with malware of different threat levels and has differ-
ent infection rates

R=0.1 R=0.3 R=0.5 R=0.7 R=0.9

Low threat level High threat level

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

Figure 12: Network throughput when nodes are deployed
with malware of different threat levels and has different
recovery rates

We evaluate the throughput of the network when proposed
solution is employed under different malware threat levels
(σ). Figure 11 shows the impact of network throughput with
the infection rate for malware threat levels (σ) at a constant
recovery rate of 0.5. Increase in the infection rate leads to
a reduced throughput, irrespective of malware threat level.
With the proposed solution, in the presence of malware with
smaller threat level, the network lets the disease to propagate
to a certain extent, as long as the decay rate r is satisfied,
leading to a lower throughput compared to the case with high
malware threat level. In case of malware with higher threat
level, the proposed solution shuts the links or reduces the
traffic aggressively to control the epidemics and reduce the
impact of malware, leading to a higher average throughput.
This can be observed from the circles in the box-plot (Figure
11), where each circle represents the throughput achieved in

different experiments. Also, in case of higher infection rate,
one can see that more experiments lead to throughput higher
than (and closer to) the average indicating that the proposed
solution maintains the network throughput.

Similarly, we also evaluate the network throughput under
different recovery rates and malware threat levels at a con-
stant infection rate of 0.5. Figure 12 shows the impact of net-
work throughput under different recovery rates for malware
threat levels (σ). It has been observed that for malware with
low threat levels, the average throughput remains constant.
However, the maximum throughput achieved increases due
to higher recovery rate. However, for malware having higher
threat levels, the malware confinement equipped with faster
recovery lead to an increased average throughput obtained
across the experiments conducted.

20 VOLUME 4, 2016

