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Abstract— Internet of things (IoT) is being developed for a wide range of applications from home automation
and personal �tness, to smart cities. With the extensive growth in adaptation of IoT devices, comes the
uncoordinated and substandard designs aimed at promptly making products available to the end consumer.
This substandard approach restricts the growth of IoT in the near future and necessitates studies to understand
requirements for an e�cient design. A particular area where IoT applications have grown signi�cantly is
the surveillance and monitoring. Applications of IoT in this domain are relying on distributed sensors, each
equipped with a battery, capable of collecting images, processing images and communicating the raw or
processed data to the nearest node until it reaches the base station for decision making. In such an IoT network
where processing can be distributed over the network, the important research question is how much of data
each node should process and how much it should communicate for a given objective. This work answers this
question and provides a deeper understanding of energy and delay trade-o�s in an IoT network with three
di�erent target metrics.
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1 INTRODUCTION
Internet of Things(IoT) is a system of devices, which has the ability to sense, compute and take
action on the data such as communicating the data or moving an actuator, just to name a few.
The data can range from sound, image to temperature, based on geographic location and system
application. Consumer-end products in IoT domain are quickly moving from traditional to network-
enabled devices like Apple Watch and Fitbit. These devices have the ability to sense the user’s
heart rate, track number of steps and generate various reminders including those corresponding
to water consumption, walking, competing with friends, among several others. Moreover, they
consolidate data between di�erent devices and provide the user with an overall view. Devices such
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as Nest have the ability to sense and control the temperature, lighting, air quality in the consumer’s
house and alert the user in case of abnormal conditions, or take steps to modify conditions based
on pre-de�ned con�gurations. IoT has found its applications in numerous �elds. One example is
the deployment of IoT enabled-devices for object detection in large areas. For instance in forest, IoT
devices are utilized to track animals, and near the international border they are used to check alien
in�ltration. In a smart city’s ecosystem, IoT devices help monitor tra�c or even pinpoint crimes. In
all of these examples of IoT enabled ecosystems, IoT devices are interconnected and should operate
in an energy-e�cient manner in a resource constrained environment to enhance network lifetime.
The proliferation of IoT enabled devices in our homes, work space and every day life results in
large amounts of data, which needs to be captured, computed, communicated and appropriately
reacted upon in an energy-e�cient and timely manner [Sayadi et al. 2018a,b]. There are several
parameters in�uencing the trade-o� between energy-e�ciency and performance [Makrani et al.
2017; Sayadi et al. 2018c] in an IoT network, including the technology of computing platform of IoT
devices (e.g. Intel Edison, Raspberry Pi, Arduino), the wireless technology interconnecting these
devices (BLE, ZigBee, WiFi, Cellular), and the application they are running for data processing
(Image processing, DSP).

The battery capacity of an IoT device is usually very small. In fact, it is sometimes harvested using
solar panels. Unlike other embedded systems [Makrani et al. 2014; Sayadi et al. 2014], IoT devices
can not a�ord to recharge their batteries frequently and are required to work for days or months on
a single charge. This requires energy-e�cient solutions to enhance their lifetime. An IoT network
is also constrained by timing requirements when deployed for real-time applications, enunciating
energy-e�cient solutions while meeting performance requirements. As a result, energy-e�ciency
and performance are required to be simultaneously optimized in such IoT networks.
New platforms [Makrani and Homayoun 2017b; Makrani et al. 2018], algorithms and network

protocols have been studied in the IoT space to minimize energy consumption. Lazarescu et.
al. [Lazarescu 2013] have presented a functional implementation of a complete wireless sensor
network platform that can be used for a range of long-term environmental monitoring IoT appli-
cations. Serra et al. [Serra et al. 2014] introduced an energy-scheduling method that minimizes
energy consumption cost based on the current energy price and user comfort constraints. Edalat et
al. [Edalat et al. 2009] and, Yu and Prasanna [Yu and Prasanna 2005] have proposed energy-aware
allocation of tasks to increase network lifetime but allocated the task as a single unit rather than
distributing the computation over the network. Dynamic voltage scaling [Krishnan 2010] [Pouwelse
et al. 2001] has been proposed [Jayakumar et al. 2014] [Zhu et al. 2015] to be used in IoT devices
where the CPU works at lower frequencies to decrease the power consumption by regulating the
voltage supplied to the system or shutting down inactive modules. Rodoplu et al. [Rodoplu and
Meng 1999] build a minimum energy communication network using a position based algorithm
aiming to construct a topology consisting of lowest energy paths to transmit from any wireless
sensor in a network to the sink node using the concept of relay transmission.

Many works [Baker and Ephremides 1981] [Ephremides et al. 1987] [Gallager et al. 1979] [Singh
et al. 1998] [Meng and Rodoplu 1998] [Ettus 1998] [Shepard 1995] have taken the optimal routing
approach to minimize the communication energy cost. The approach is to minimize the energy
consumed to reach the destination or sink node, which would minimize the energy consumed per
packet or task. If all tra�c is routed through the same path, batteries of such nodes would run out
quickly while that of other nodes would remain intact.
Optimal task/resource allocation has been extensively studied for wireless sensor networks.

In [Pilloni and Atzori 2011] node’s residual energy is taken into account and a centralized task
allocation algorithm is proposed to improve the network lifetime. The task execution time or delay
is taken into account in [Zhu et al. 2007] and the same problem is analyzed. In [Pilloni et al. 2012]
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the authors provide a framework that distributes tasks to di�erent nodes in a network by means of
a distributed optimization algorithm based on gossip communication to increase network lifetime.

In this work, we study a common case IoT network where nodes are interconnected, collecting
data, and in a cooperative manner processing and communicating the data through the network
to a base station for decision making. Such common IoT network can be found in smart cities for
surveillance or in environmental applications for monitoring the airborne quality, water quality,
radiation, andmany other environment indicators.We study IoT networkswith various optimization
objectives and constraint metrics to address energy-e�ciency and performance requirements
[Makrani and Homayoun 2017a] by dividing and e�ciently allocating computation of workload
data over the entire IoT network [Sayadi et al. 2017]. The important research question that is raised
in such IoT network is, how much data each node should communicate and how much data should
be locally computed for a given optimization goal. The allocation is optimized by analyzing the
immediate platform-speci�c parameters such as computation energy, transmit energy, receive
energy, available energy in each node and distance from the base station as well as reduction (or
compression) of data based on the running application as it travels through the network and is
processed by various nodes. In this paper, this problem is formulated into a LP (Linear Programming)
and is solved using Scip Optimization Suite [Gamrath et al. 2016] and Symphony [Ralphs and
Güzelsoy 2005] from Coin-OR. This approach not only minimizes the overall energy consumption
of the network, but also provides a balanced performance-energy solution with increased network
lifetime. The results provide network designer with information to create an e�cient IoT network
based on application-speci�c requirements.
This paper in brief makes the following new contributions:
-We study whether in an IoT network a task computation should be entirely done on the source

node, or distributed across several nodes as it travels towards the base station.
-We study the computation vs communication problem in IoT networks with three di�erent

objectives of minimizing overall energy, maximizing available energy and meeting delay deadline.
We de�ne energy and delay weight as two terms to solve the optimization problem.

-We study how di�erent IoT sensor parameters (computing and communication) a�ect the
computation allocation on each node.
In brief, the paper makes the following observations:
-For minimizing energy dissipation objective, all data should be processed on the �rst node in

a homogeneous network or the node/s with the least communication and computation cost in a
heterogeneous network.
-If a node has least energy battery level, the data should be computed before it reaches that

node. This will cause the computation cost at that node to become zero, and also minimizes the
communication overhead.

-In presence of multiple instances of the same platform in the network, the earlier instance closer
to the source is always e�cient in terms of communication and computation cost.

-We provide an allocation strategy for delay deadline objective, which can be followed for optimal
allocation without the overhead of the solver.

2 SYSTEM MODEL & PROBLEM DEFINITION
We consider a system with a set of n sensor nodes, S = {Si : i = 0, 1, 2, ...,n}, where S0 is the source
or generator of data and Sn is the sink and the only node connected to a base station. Each node
is powered with a small battery is only capable of communicating with its immediate neighbors,
i.e. Si can only communicate with Si+1 and Si�1. The task of the sensor nodes is to compute and
communicate data generated at S0 to the base station. The task incurs an energy and delay cost on
each sensor node.
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Fig. 1. IoT Network

The energy cost at each node Ni , has two components as de�ned in Table 1, namely the compu-
tation cost and the communication cost. At S0, the receive cost is zero as it does not receive data
from any other node.

Table 1. Components of energy cost at a node

Energy cost Description

component

Computation Computation cost per bit (Pi ) * Bits computed (xi )

Communication Transmission cost + Receive cost

Transmission Transmission cost per bit (Ti ) * Bits transmitted

Receive Receive cost per bit (Ri ) * Bits received

Table 2. Components of delay at a node

Delay component Description

Computation Computation delay per bit (DPi ) * Bits computed (xi )

Transmission Bits transmitted*[1/Transmission rate (DT i )]

The delay cost Di for a node is de�ned by it’s two components, computation delay and transmis-
sion delay in Table 2. When a node transmits data, the next node receives the data simultaneously.
Thus, we do not take into account any data receive delay. The platform speci�c parameters de�ned
for our network are listed in Table 3.

When a node computes part of the total data size � , the size of the processed data reduces based
on the compression factor. Ci is de�ned as 1 - compression factor. For instance, if 100 bits are
computed on a node with Ci of 0.1, the size of the computed data is only 10 bits. The node then
transmits all the computed data along with uncomputed data to its immediate neighbor towards
the sink node. If uncomputed data reaches the sink node, all of it must be computed before being
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Table 3. Platform parameters & their description

Parameter Description Unit

Ni Energy cost incurred at node i J

Di Delay cost incurred at node i s

xi Data allocated to be computed at node i bits

Pi Computation cost per bit at node i J/bit

Ti Transmission cost per bit at node i J/bit

Ri Receive cost per bit at node i J/bit

Ci (1 - Compression factor) at node i -

Ei Energy level at node i J

DPi Delay due to computation per bit at node i s/bit

DT i Transmission rate at node i bit/s

� Data size bit

� Delay deadline s

Table 4. Problem formulation for minimizing overall energy consumption

MOEC problem constraints

Minimize
Õn

i=0 Ni (a)

Subject to
Õn

i=0 xi = � (b)

communicated to the base station. Such an IoT network is commonly used for surveillance, tra�c
control, and environmental monitoring, where sensors are collecting and cooperatively processing
and transmitting the data to the base for decision making.

We study this type of common IoT network to �nd out the optimal assignment of computation
vs communication work with various objectives such as meeting a deadline, or energy-e�ciency.

3 MODELING & FORMULATION
For optimization purposes, we de�ne our model for various metrics and formulate the problem
into its objective and constraints.

3.1 Minimize Overall Energy Consumption (MOEC)
Minimize Overall Energy (MOEC) objective is to minimize the overall energy consumption over the
entire network, thus the sum of energy consumption throughout all nodes in the network should
be the least.

Table 4 shows the parameters employed for the linear programming formulation. Expression (a)
is the objective of the problem.

Õn
i=0 Ni is the sum of the energy consumed on each node in the
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system, which takes into account the energy used to compute and communicate data to the next
node. It is de�ned as:

Ni =

Computation Ener�� Costz}|{
Pixi +

T ransmit Ener�� Costz                          }|                          {
Ti (� �

i’
j=0

x j +
i’
j=0

Cjx j )+

Recei�e Ener�� Costz                          }|                          {
Ri (� �

i�1’
j=0

x j +
i�1’
j=0

Cjx j )

(1)

When simpli�ed in terms of xi ,
Õn

i=0 Ni can be represented as,
n’
i=0

Aixi + � (2)

where, Ai is the weight/coe�cient of xi towards the total energy consumption and,

Ai = Pi + {
n�1’
j=i

Tj (Ci � 1)} +Tn ⇤Ci +

n’
j=i+1

R j (Ci � 1) (3)

and constant � is,

� = � ⇤ (
n�1’
j=0

Tj +
n’
j=1

R j ) (4)

It should be noted that Ai is de�ned as a node’s energy weight and takes communication as well
as computation cost into account.

Expression (b) in Table 4 is the constraint, where xi is the amount of data assigned to be computed
on node i and their sum should be equal to the data size � , to make sure that all data is computed
within the network.

3.2 Maximize Minimum Energy Le� on Any Node (MME)
The MME’s objective is to maximize the minimum energy left on any node. This objective is
correlated with the network lifetime. The network is considered to be defunct when any node’s
energy depth reaches zero. This problem is formulated in two steps as shown Table 5, where we
calculate a number of optimal solutions in step 1 and reduce the search area further in step 2.
We consider a sensor node Sm having the least energy level Em among all the nodes in the

network. To maximize Em , we formulate the objective such that the solution consumes the least
energy on Sm to complete the task i.e., Minimize Nm , expression (c). It is essential to check if the
objective unnecessarily penalize other nodes in the network and hence expression (d) restricts the
energy consumption on all other nodes such that their energy level do not fall below Em . Expression
(e) makes sure that all data is computed within the network. It should be noted that we derive
many optimal solutions in step 1, each having di�erent overall energy consumption. An additional
constraint (i.e., g) derived from step 1 is utilized in step 2 to minimize the energy consumption on
node Nm and subsequently minimize the overall energy consumption to �nd the solution for our
bi-objective problem, from the pool of optimal solutions.
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Table 5. Maximize minimum energy le� on any node

MME problem constraints

Step 1 Minimize Nm (c)

energy at node m is minimum

Subject to 8 i 2 {0, ..,n}, i ,m : Ei � Ni � Em (d)Õn
i=0 xi = � (e)

Step 2 Minimize
Õn

i=0 Ni (f)

Subject to Nm  Optimal solution from step 1 (g)

8 i 2 {0, ..,n} : Ei � Ni � Em (h)Õn
i=0 xi = � (i)

Table 6. Minimize energy with deadline constraint

DD problem constraints

Minimize
Õn
i=0 Ni (j)

Subject to
Õn
i=0 Di  � (k)Õn
i=0 xi = � (l)

3.3 Delay Deadline(DD)
The Delay Deadline(DD) objective is de�ned to observe the e�ect of computation allocation on
energy and delay for real-time applications in an IoT network. The objective of this metric is to
minimize the overall energy consumption while meeting the performance or deadline requirement
of the task. The deadline � in expression (k) may be a user de�ned constraint or a quality of service
assurance by the network which restricts the end to end delay in the network.

To observe the delay associated with the network, we study various sources of delay on a node.
As discussed in section 2, the delay on each node is de�ned to be the sum of the computation and
transmission delay. To simplify the problem and avoid complexity, we assume queuing delay to be
zero. Moreover, since the distances between two neighbor nodes is small in an IoT network, the
propagation delay is assumed to be zero.
Thus, The delay on each node is formulated as follows:

Di =

Computation Dela�z}|{
DPixi +

T ransmission Dela�z                              }|                              {
(� �

i’
j=0

x j +
i’
j=0

Cjx j )/DT i
(5)

Õn
i=0 Di can be simpli�ed in terms of xi and be represented as,
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n’
i=0

Bixi + � (6)

where, Bi is the weight/coe�cient of xi towards the total delay and,

Bi = DPi + {
n�1’
j=i

(Ci � 1)/DT j } +Ci/DTn (7)

and constant � is,

� = � ⇤ (
n�1’
j=0

Tj ) (8)

It should be noted that Bi is de�ned as a node’s delay weight and it takes communication as well
as computation delay cost into account.

4 EXPERIMENTAL SETUP
A simulator is developed in C-language, which uses platform and network parameters and syn-
thesizes the problem into a solver speci�c format based on the required objective. We use two
solvers to obtain the optimal solution to the problem generated by the simulator, Symphony [Ralphs
and Güzelsoy 2005] and Scip optimization suite [Gamrath et al. 2016]. We perform image feature
detection using Harris Corner and Canny Edge detection from the OpenCV Suite [Bradski 2000] on
NVIDIA Jetson TK1, Intel Galileo and Intel Edison boards to obtain real world values for platform
parameters. These are low power embedded platform which are designed for a wide range of
low-end to high-end IoT applications processing. The power consumption of all three platforms is
measured using picoScope digital oscilloscope and the timing is measured using the CPU timing
functions available under the GNU C library. Result for these experiments is shown in Table 7.
The communication cost is measured at 0.00525uW/bit for Wi-Fi when transmitting a 40 Mbps
User Datagram Protocol (UDP) payload, 0.153 uW/bit for BLE and 185.9 uW/bit for Zigbee in our
experiments [Smith 2011].

Table 7. Real value of platform parameters

Platform

Algorithm Harris Corner Canny Edge

J/bit s/bit J/bit s/bit

Nvidia Jetson 3.87E-008 1.16E-008 2.02E-008 6.21E-009

Nvidia Jetson Low Power 2.47E-008 2.36E-008 1.01E-008 1.31E-008

Intel Galileo 7.89E-008 4.32E-007 2.58E-008 1.30E-007

Intel Edison 1.91E-008 4.71E-008 6.63E-009 2.80E-008

5 OBSERVATIONS
5.1 Minimize Overall Energy Consumption (MOEC)
For MOEC objective, the results show that all computation work should be assigned to the node
having the least energy weight (Ai ), to reduce the total power consumption. For a homogeneous
network, this is always the �rst node. It is important to note that the node weight is de�ned as Ai ,
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taking communication as well as computation cost into account. Following is a short proof of why
Ai of the �rst node in a homogeneous network is the smallest:

Computation cost on node = xi ⇤ Pi (9)
Since the computation factor Pi is the same on every node, we are free to allocate computation on
any node with no change to the total computation cost in the network. However,

Commn cost on node = Recei�e_data_size ⇤ Ri+
Transmit_data_size ⇤Ti

(10)

The communication cost on a node is proportional to the size of data it receives from and transmits
to its neighbor. The size of processed data reduces by some factor based on the compression factor
Ci . If all data is processed on the �rst node, all other nodes are only responsible for communicating
a smaller size of data incurring the lowest possible cost on that node.
It is observed that, an increase in the computation cost (Pi ) results in an increase in the

weight/coe�cient of the node. An increase in transmission costTi , receive cost Ri and compression
factor Ci negatively a�ects the weight.[Table 8].

Table 8. Proportionality of platform parameters on node’s energy weight (Ai )

Platform Parameter Proportionality

Computation cost per bit Proportional

Transmission cost per bit Inversely Proportional

Receive cost per bit Inversely Proportional

Compression Factor Inversely Proportional

Based on the network con�gurations and platform speci�cations, in special cases, the lowest node
weights could correspond to two or more nodes. In these cases, we can distribute the computation
work on the nodes with equal energyweights in any bias andminimize the total energy consumption
of the system.
To show that with minimizing the total power consumption as our objective, carrying out the

entire computation on one node is always the best solution, we use a counter argument.

P����. The overall energy consumption of the system when simpli�ed in terms of xi is given
by:

n’
i=0

Aixi +C

Let us assume that two nodes (i.e. Y and Z) have large coe�cients and node M has the least
coe�cient in the above equation. We assume that the overall energy consumption of the system is
least when work is assigned to node Y and node Z. Thus,

AYxY +AZxZ +C  AMxM +C ; xY + xZ = xM

But,
AM  AY | AM  AZ

Multiplying both sides of the two equations with xY and xZ respectively, we get:
AMxY  AYxY | AMxZ  AZxZ
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Table 9. Task allocation strategy for MME objective

Step 1 Search node Smin with minimum energy Emin

Step 2 Find least energy weight node SAmin0 earlier in the

sequence than Smin

Step 3 Allocate maximum percentage of data xSAmin0 , s.t.

available energy remain above Emin after processing.

Step 4 If
Õn

i=0 xSLi < �

Find next least weight node SLi+1
Go to Step 3

Else,

Step 5 Finish.

Adding both of the equations, replacing xY + xZ with xM and adding constant C on both sides,
AMxM +C  AYxY +AZxZ +C

which contradicts our initial assumption. ⇤

Thus carrying out all computation on node M would be the most e�cient solution given the
MOEC objective.

5.2 Maximize Minimum Energy Le� on Any Node (MME)
We observe that when the battery life-time constraint is added to our optimization objective, the
best solution is to distribute the computation work among several nodes. This task distribution
leads to increased overall energy consumption of the network but allows a longer network lifetime.
For MME,the �rst step is to identify the node with minimum energy Smin in the network. The

allocation is then done such that all data is computed before reaching the node with the least energy
level. The allocation will be done at the node with least energy weight. This minimizes the energy
consumption on the node with minimum energy Smin by reducing the communication overhead
because the size of the workload reduces after computation on previous node. In case none of the
previous node can be used for allocation due to energy level restriction, the node Smin or the ones
after can be used based on their energy weights. Table 9 shows this allocation strategy. It is noted
that when the cost of computation is small, noticeably less than the cost of communication, the rate
at which the battery of the �rst node depletes is becoming small such that the data computation
may never be o�oaded to the next node.
To better understand the distribution of computation in a heterogeneous network we provide

a simple example. The energy weights of the �rst ten nodes of a twenty �ve node network are
shown in Figure 2. To account for heterogeneity, we divide the network into two group of nodes i.e.
from node 0 to node 4 (Type I) and from node 5 to node 24 (Type II). Type I nodes have a lower
computation and communication energy cost (weight) than type II and initially have equal energy
available to them at 10800 J(Fully charged AA batteries). Node 5 is an exception with the least
available energy in the network at some random value, 10400 J. In Figure 3, the y-axis represent
the available energy on each node and the x-axis represent each nodes in the network. MME 0 is
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Fig. 2. Comparison of available energy on nodes

Fig. 3. Comparison of available energy on nodes

the initial state of the network. MME 20 represents the energy available in the battery of each node
after twenty tasks are computed on the network and MME 100 is the state of the batteries after
one hundred tasks have been computed on the network. Initially, 100% of data is computed on the
�rst node, since it has the least energy weight. After a few tasks, the available energy di�erence
between node 0 and node 5 is not large enough to keep computing all the data. Hence, part of the
data would now be computed on node 1, as it is the next appropriate node with least energy weight.
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Fig. 4. Variation in energy levels of all nodes across the network

This trend keeps repeating and after 20 tasks(MME 20) node 0 to node 3 have to transfer some
computation to node 4. Since, node 4 was only communicating data till now, it has su�cient energy
to take some computation work. As node 4 keeps computing more data their energy levels drop
to the same level. Computation distribution allows the energy level on all nodes in the network
to deplete together rather than one or a group of nodes being completely depleted. This trend is
further discussed in detail while discussing Figure 5 and Figure 6.
We notice that the depletion of energy on nodes is balanced by the solution and the average

variation in energy levels of all nodes in the network is reducing as more tasks are processed. The
solution attempts to avoid reducing the energy of the battery on the node(s) with minimum energy.
This trend can be seen in Figure 4.

We explain the allocation by using two �gures, one which shows us the energy levels at di�erent
nodes after completion of each task and the other showing allocations per task.

Figure 5 shows assignment of computation work during the simulation time. Each column in the
graph shows the allocation of computation suggested by the simulator. The y-axis is the percentage
of work allocated on a node and the x-axis is the simulated time. Every time interval (1 second) a
new task is injected into the network, computed at optimal locations and communicated to the
base station. As expected, initially, the �rst node or the node with the least weight gets majority
of the allocation to reduce the energy consumption and gradually the work is o�oaded to the
nodes with the least weight from the pool of available nodes to preserve the network’s life-time.
Figure 6, 7, 8 show the available energy on each node during simulation time. Figure 6 shows the
overall trend from time zero to the end of simulation and Figure 7 and Figure 8 are for shorter time
intervals for better presentation of trends and results. In Figure 7, the point where transfer of data
to the next node for computation increases can be identi�ed as the time where the di�erence in
available energy on the node with majority of data allocation is negligible to the energy level of
the node with least available energy in the network, i.e. Node 5 in this case. At this point, the node
cannot keep consuming the same amount of energy and computation load needs to be o�oaded to
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(a) Time 0s - 18s

(b) Time 19s - 35s

Fig. 5. Assignment of computation work during the simulation

the next appropriate node to prevent its energy depleting below the least allowable level in the
network, i.e. energy level of Node 5.

Thus, after the initial allocation, alternate nodes are allocated with the majority of the computa-
tion, and the initial nodes are allocated a constant computation load such that their available energy
stays above the least allowable level in the network. As the energy level on node 4 reaches close
to node 5, we observe a slightly di�erent behavior. Node 5 is skipped for computation allocation
and computation is moved to node 6. This causes the energy depletion rate of node 5 to increase
since a larger data size is communicated to the next node(Processed Data + Unprocessed data).
Subsequently, when next time a new task is injected into the network, the gap between the energy
level of node 0 - node 4 to that of minimum battery node increases such that more data is allocated
back to these nodes. This pattern occurs recursively till the energy level at node 6 depletes to that
of node 5. Next, node 7 is allocated some data and the pattern repeats from node 0 to node 7. This
pattern is clearly shown in Figure 8 and Figure 6.

An interesting observation from Figure 6 is regarding the network life-time which can be inferred
from the slope plotted between the available energy and time. The slope represents the depletion
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Fig. 6. Available energy on nodes during MME simulation [Time 0s-100s]

rate of available energy on a node. The slope for each node is proportional to the computation and
communication cost of the node and can be used to understand whether the computation will be
o�oaded to the next e�cient node with the least weight. If the slope of the node with minimum
energy is smaller (negative) than the most e�cient node, the computation will not be o�oaded.
The network lifetime increases as the slope positively increases towards zero and decreases when
it moves in the other direction.

5.3 Delay Deadline (DD)
For the delay deadline optimization objective, we study the e�ect of deadline requirement on the
computation allocation. For a homogeneous network, the �rst node is the most e�cient node
in terms of energy cost and delay cost. If all data is processed on the �rst node, the overhead of
communication is minimized, as data size gets reduced by some compression Ci . As we compute
data away from the source node, the delay increases and reaches its maximum when the entire
data is computed on the last node. It should be noted that the node’s delay weight is proportional
to the computational delay per bit and inversely proportional to the transmission rate and the
compression factor (See Table 10).

We also study a heterogeneous system made of two types of nodes placed alternatively in groups.
We look at the Ai and Bi (Introduced in section 3.3.1 and 3. 3.3), the energy weight and the delay
weight of each node to understand allocation. In Figure 9 when comparing identical type of groups,
we notice that all nodes of a group closer to the source are always more e�cient in terms of energy
(�rst node of the group being the most e�cient) than a group placed later in the network. The
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Fig. 7. Available energy on nodes during MME simulation [Time 0s-20s]

Table 10. Proportionality of platform parameters on delay weight (Bi )

Platform Parameter Proportionality

Computational delay per bit Proportional

Transmission rate Inversely Proportional

Compression Factor Inversely Proportional

same trend can be seen in Figure 10 for delay weights for each node. These observations can be
used to select candidate nodes for computation allocation in a network.

In Figure 9, node 10 has the least weight towards energy consumption and is the best candidate
to start our allocation strategy with. All subsequent nodes within the homogeneous group and
of other identical groups in the network are not considered candidates as they will have a higher
weight towards energy consumption as well as delay. All data can be allocated to be processed
on the candidate node and checked for deadline adherence. This is the most e�cient node of the
network and network designers should make sure that most of their workload deadlines can be met
with this node itself. If the solution does not meet the deadline, we search for the next candidate to
o�oad the data. It should be noted that if the node with the smallest weight in terms of energy
consumption and delay is the same and does not meet the deadline, it is impossible to �nd any other
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Fig. 8. Available energy on nodes during MME simulation [Time 20s-40s]

computation allocation that adheres to the deadline. The next candidate is node 0 in this example,
as this is the node with the least energy weight from the left over nodes with an improved delay
weight. Allocation of data is now iteratively increased on this new candidate and reduced on the
previous one until the solution meets the required deadline. The optimal solution for computation
allocation will always have maximally two nodes sharing computation.
The complete allocation strategy is listed in Table 11 and another example is used to explain it.
We study another example of a heterogeneous network with energy and delay weights of each

node as shown in Figure 11 and Figure 12 respectively. This example shows how the allocation
algorithm operates. Following the algorithm, we �rst �nd the node with the least and second least
energy weight in the network. Allocation on these nodes incur the lowest energy cost and become a
good starting point. In this example these nodes are node 16(least energy weight) and node 8(second
least energy weight). The next step is to allocate all data on node 16 and check if this solution
adheres to the required deadline. If the deadline is met, we have the optimal solution for the de�ned
deadline. If the deadline cannot be met with this node and a node with a smaller delay weight is
not present in the network, the deadline cannot be met (step 5). In step 6, we �nd all appropriate
candidates for transfer of allocation to meet the deadline, which was already discussed earlier in
this section. The candidates in this example are node 8 and node 0 as they have much smaller delay
weight Bi than node 16. Here node 9 to node 15 and node 1 to node 7 are not candidates for transfer
of allocation as the �rst node in a homogeneous group has the least energy and delay weight, i.e.
node 0 and node 8. With extensive simulations we found out that the optimal solution includes
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two or less nodes. Hence, in step 7, we �nd out the allocation distribution on (node 16, node 8)
and (node 16, node 0), such that the deadline is met. We compare the total energy consumption
between the two allocation combination and choose the one that uses the minimum energy. It
should be noted that if there exists an allocation such that the deadline is met with the top two

Fig. 9. Energy weight (Ai ) for each node in the network

Fig. 10. Delay weight (Bi ) for each node in the network
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Fig. 11. Delay weight (Ai ) for each node in the sample network

Fig. 12. Delay weight (Bi ) for each node in the sample network

candidates, which are node 16 and node 8 in this example, the optimal solution can be found with a
combination of the best candidate (node 16) and other candidates(node 8, node 0), i.e. (node 16,
node 8) and (node 16, node 0). If not, we have to explore other possible combinations, like (Node8,
Node0) in this example and compare the total energy consumption between all of them.
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Table 11. Task allocation strategy in a heterogeneous network - DD objective

Step 1 Find node Sm with least energy weight Am

Step 2 Find node Sn with least energy weight s.t.
An � Am and Bn < Bm

Step 3 Allocate 100% data to be computed on Sm

Step 4 Check if solution meets deadline
If True, �nish.
Else,

Step 5 Check if Bm is least in the system
If True, Deadline cannot be met.
Else,

Step 6 Find candidates for transfer of allocation
i.e. nodes where, Ai � Ai�1 and Bi < Bi�1

Step 7 For all candidates Si , �nd (xi ,xmi ) such that,
Bixi + Bmxmi  � , where xi + xmi = �

Step 8 If there exists no solution for Bnxn + Bmxm  �

Store Z  Min(8i 2 candidates : Aixi +Amxm)
Sm = Sn , Go to Step 2
Else,

Step 9 Min(8i 2 candidates : Aixi +Amxm ,Z ), �nish.

We now show that for the deadline delay objective two or less than two nodes will only provide
an optimal solution. For this proof we use a counter argument.

P����. Let us assume we have two solutions that adhere to the deadline � , one where two nodes
participate and the other where an extra node participate in the solution. Let us name these nodes,
SD , SE , SF with energy weights AD ,AE ,AF .
We have the following assumptions:

AD < AE < AF (11)
3node solutionz          }|          {
xD + xE + xF =

2node solutionz          }|          {
xG + xH = � (12)

We study three cases and assume that energy consumption is less when allocation is done on
three nodes compared to two nodes or less. We then prove that our assumption is incorrect.

Case I : When deadline is met with SD , SE
Case I.A: When moving from a two to three node solution some part of xH is o�oaded to
the third node for computation

xG = xD & xH = xE + xF (13)

ACM Transactions on Design Automation of Electronic Systems, Vol. 0, No. 0, Article 0. Publication date: 2017.



0:20 Chopra, A. et al

Comparing energy consumption between the two solutions i.e. (SD , SE , SF ) and (SD , SE ):
ADxD +AExE +AFxF + � < ADxG +AExH + �

Using equation 13 and removing equal terms on both sides, we get
AF < AE

Which contradicts our initial assumption in equation 11.
Case I.B: When moving from a two to three node solution some part of xG is o�oaded to the
third node for computation

xH = xE & xG = xD + xF (14)
Comparing energy consumption between the two solutions

ADxD +AExE +AFxF + � < ADxG +AExH + �

Using equation 14 and removing equal terms on both sides, we get
AF < AD

Which contradicts our initial assumption in equation 11.
Case I.C: When moving from a two to three node solution some part of xG and xH is o�oaded
to the third node for computation

xG > xD & xH > xE (15)
Comparing energy consumption between the two solutions

ADxD +AExE +AFxF + � < ADxG +AExH + �

Using equation 12, we get
ADxD +AExE +AFxF < ADxG +AE (xD + xE + xF � xG )

Removing equal terms and moving remaining terms to LHS.
xF (AF �AE ) + (xG � xD )(AE �AD ) < 0

But,
xF (AF �AE ) > 0, since AF > AE & xF > 0

(AE �AD ) > 0, since AE > AD

(xG � xD ) > 0, since xG > xD
which contradicts our initial assumption.

Case II : When deadline can be met with SE , SF , but not SD , SE
In this case if the deadline can be met with SD , SE , SF , it can also be met with SD , SF .

i .e . BD > BE > BF (16)
Comparing energy consumption of the two solutions, i.e. (SD , SE , SF ) and (SE , SF ), we assume
the three node solution consumes less energy than a two node solution.

ADxD +AExE +AFxF + �  AExG +AFxH + �

Simplifying the equation and moving all terms to LHS

xD (AD �AE ) + (xH � xF )(AE �AF )  0 (17)
In the above equation,

xD > 0
(AD �AE ) < 0
(AE �AF ) < 0
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Hence, for the equation 17 to hold true, we have two cases
(xH � xF ) � 0 or (xH � xF ) < 0

We now prove that in case of (xH �xF ) � 0 the deadline cannot be met, and for (xH �xF ) < 0,
SE , SF provide better energy consumption.
Case II.A: (xH � xF ) � 0
Comparing delays between the two solution i.e. (SD , SE , SF ) and (SE , SF ),

BDxD + BExE + BFxF + �  BExG + BFxH + �

Using equation 12 and simplifying,
xD (BD � BE ) + (xH � xF )(BE � BF )  0 (18)

But,
xD > 0

(BD � BE ) > 0
(BE � BF ) > 0
(xH � xF ) � 0

which contradicts equation 18.
Case II.B: (xH � xF ) < 0 or (xF � xH ) > 0
Comparing energy consumption between the two solutions, i.e. (SD , SE , SF ) and (SD , SF ):

ADxD +AExE +AFxF + �  ADxG +AFxH + �

Simplifying the equation and moving all terms to LHS
xE (AE �AD ) + (xF � xH )(AF � xD )  0 (19)

But,
xE > 0

(AE �AD ) > 0
(AF � xD ) > 0
(xF � xH ) > 0

which contradicts equation 19.

Hence, we prove that allocation on two nodes will always consume less energy for a delay require-
ment than a three node solution. We can similarly prove that a three node solution is always better
than a four node solution and so on. ⇤

5.4 Solver Overhead
We assume that the optimization solver is run on the source node every time a new task is injected
into the network. The source node is aware of each node’s computation and communication cost.
This information needs to be updated to the source node initially by all nodes and again in case the
node is replaced or if their was a signi�cant change in the battery level without the involvement of
computation and communication cost. The cost of updating these parameters is negligible over the
lifetime of the network. The solver has a very small overhead in comparison to the task studied in
this work. For a small task(standard de�nition image frame of size 922Kb), if we compute 100%
data on a Nvidia Jetson node with BLE(DTi = 1.00E � 006), the computation delay is 0.046s and
communication delay at 70% compression rate is 2.26s, bringing the total delay of the operation to
2.30s. This implies that in a homogeneous system (all nodes are Nvidia Jetson with BLE), assuming
that all data is computed on the �rst node which is the most e�cient solution, the total delay is
2.3s for the �rst node plus an additional 2.26s per node for every other node the data needs to
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go through to reach to the base station. In comparison, the average solver run time is 2ms. For
a 10 node homogenous network, the solver delay overhead is 0.008%. For larger tasks, the solver
run-time remains the same leading to an even lower solver overhead. The energy consumption of
the solver is 0.06J on average for any data size whereas for a 10 node homogeneous network the
total energy consumption to compute and communicate date to the base station is 0.46J. It should
be noted that the solver in its current state has many I/O operations to log intermittent results for
this study which when removed will further lower the energy and delay overhead.

6 FUTUREWORK AND CONCLUDING REMARKS
Energy constraints and performance requirements are real issues for IoT networks. The allocation of
computation in an IoT network is a challenging problem given the diversity of network, optimization
goal, computation and communication overhead and type of task to be performed. This work is an
e�ort to thoroughly study and analyze task computation and communication allocations in IoT
networks given three important optimization metrics, namely energy-e�ciency, available energy
maximization and delay-deadline optimization. The metrics were formulated into an ILP(Integer
Linear Programming) problem and the results show that when energy e�ciency is the only objective,
it makes sense to process all data on a single node. In the presence of a deadline constraint, the
results show that it is bene�cial to distribute the computation across the network. The observations
can be used by network designers to understand the energy delay trade o� within the network and
appropriately design the network such that the most energy e�cient node or least energy weight
node can be identi�ed and used to assure quality of service with low energy consumption. The
formulated allocation algorithm can be used to quickly �nd an optimal solution without requiring
to run complex algorithms, lowering the overhead. This work can be further used in interpreting
the optimal allocation for a completely connected network. After an optimal path is identi�ed,
computation allocation can be distributed to make the system more e�cient. We conclude that
with an energy e�ciency metric, for a completely connected network the optimal solution would
be to allocate computation on one node i.e. the node with the least energy weight.
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