Abstract Interpretation
Non-Standard Semantics

Lecture 8-9
ECS 240
The Problem

• It is useful to predict program behavior \textit{statically} (without running the program)
 - For optimizing compilers
 - For software engineering tools

• The semantics we studied so far give us the precise semantics

• However, precise static predictions are impossible
 - The exact semantics is not computable

• We must settle for approximate, but correct static analysis (e.g. VC vs. WP)
The Plan

• We will introduce abstract interpretation by example

• Starting with a miniscule language we will build up to a fairly realistic application

• Along the way we will see most of the ideas and difficulties that arise in a big class of applications
A Tiny Language

- Consider the following language of arithmetic
 \[e ::= n \mid e_1 \ast e_2 \]

- The denotational semantics of this language
 \[[n] = n \]
 \[[e_1 \ast e_2] = [e_1] \times [e_2] \]

- For this language the precise semantics is computable
An Abstraction

• Assume that we are interested not in the value of the expression, but only in its sign:
 - positive (+), negative (-), or zero (0)

• We can define an abstract semantics that computes only the sign of the result
 \[\sigma : \text{Exp} \rightarrow \{-, 0, +\} \]
 \[
 \begin{align*}
 \sigma(n) &= \text{sign}(n) \\
 \sigma(e_1 \ast e_2) &= \sigma(e_1) \otimes \sigma(e_2)
 \end{align*}
 \]

\[
\begin{array}{c|ccc}
\otimes & - & 0 & + \\
\hline
- & + & 0 & - \\
0 & 0 & 0 & 0 \\
+ & - & 0 & + \\
\end{array}
\]
Correctness of Sign Abstraction

• We can show that the abstraction is correct in the sense that it correctly predicts the sign

\[[e] > 0 \iff \sigma(e) = + \]
\[[e] = 0 \iff \sigma(e) = 0 \]
\[[e] < 0 \iff \sigma(e) = - \]

• Our semantics is abstract but precise

• Proof is by structural induction on expression e
 - Each case repeats similar reasoning
Another View of Soundness

• We associate with each concrete value an abstract value:
 \[\beta : \mathbb{Z} \to \{-, 0, +\} \]
• This is called the abstraction function
• Conversely we can also define the concretization function:
 \[\gamma : \{-, 0, +\} \to \mathcal{P}(\mathbb{Z}) \]
 \[\gamma(+) = \{ n \in \mathbb{Z} \mid n > 0 \} \]
 \[\gamma(0) = \{ 0 \} \]
 \[\gamma(-) = \{ n \in \mathbb{Z} \mid n < 0 \} \]
Another View of Soundness (Cont.)

- Soundness can be stated succinctly
 \[\forall e \in \text{Exp.} \ [e] \in \gamma(\sigma(e)) \]
 (the true value of the expression is among the concrete values represented by the abstract value of the expression)

- Let \(C \) be the concrete domain (e.g. \(\mathbb{Z} \)) and \(A \) be the abstract domain (e.g. \(\{-, 0, +\} \))

```
\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\downarrow{[\cdot]} & & \downarrow{\gamma} \\
C & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]
```

ECS 240 Lecture 8-9 8
Another View of Soundness (Cont.)

• Consider the generic abstraction of an operator
 \(\sigma(e_1 \text{ op } e_2) = \sigma(e_1) \text{ op } \sigma(e_2) \)

• This is sound iff
 \(\forall a_1 \forall a_2. \gamma(a_1 \text{ op } a_2) \supseteq \{ n_1 \text{ op } n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \)

• E.g. \(\gamma(a_1 \otimes a_2) \supseteq \{ n_1 \ast n_2 \mid n_1 \in \gamma(a_1), n_2 \in \gamma(a_2) \} \)

• This reduces the proof of correctness to one proof for each operator
Abstract Interpretation

• This is our first example of an abstract interpretation.

• We carry out computation in an abstract domain

• The abstract semantics is a sound approximation of the standard semantics

• The concretization and abstraction functions establish the connection between the two domains
Adding Unary Minus and Addition

- We extend the language to $e ::= n \mid e_1 \times e_2 \mid - e$
- We define $\sigma(-e) = \ominus \sigma(e)$

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ominus</td>
<td>+</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

- Now we add addition: $e ::= n \mid e_1 \times e_2 \mid - e \mid e_1 + e_2$
- We define $\sigma(e_1 + e_2) = \sigma(e_1) \oplus \sigma(e_2)$

<table>
<thead>
<tr>
<th></th>
<th>-</th>
<th>0</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>\oplus</td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>?</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>?</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>
Adding Addition

• The sign values are not closed under addition
• What should be the value of “+ ⊕ -”?
• Start from the soundness condition:
 \[\gamma(+ \oplus -) \supseteq \{ n_1 + n_2 \mid n_1 > 0, n_2 < 0 \} = \mathbb{Z} \]
• We don’t have an abstract value whose concretization includes \(\mathbb{Z} \), so we add one: \(\top \)

<table>
<thead>
<tr>
<th>⊕</th>
<th>-</th>
<th>0</th>
<th>+</th>
<th>\top</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>+</td>
<td>\top</td>
</tr>
<tr>
<td>+</td>
<td>\top</td>
<td>+</td>
<td>+</td>
<td>\top</td>
</tr>
<tr>
<td>\top</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
<td>\top</td>
</tr>
</tbody>
</table>
Examples

• Abstract computation might loose information

\[[(1 + 2) + -3] = 0 \]
\[\sigma((1+2) + -3) = (\sigma(1) \oplus \sigma(2)) \oplus \sigma(-3) = (+ \oplus +) \oplus - = \top \]

• We loose some precision
• But this will simplify the computation of the abstract answer in cases when the precise answer is not computable
Adding Division

• Fairly straightforward except for division by 0
 - We say that there is no answer in that case
 - \(\gamma(+ \odot 0) = \{ n \mid n = n_1 / 0 , n_1 > 0 \} = \emptyset \)

• We introduce \(\bot \) to be the abstraction of the \(\emptyset \)
 - We also use the same abstraction for non-termination!

\[
\begin{array}{c|cccc}
\emptyset & - & 0 & + & \top & \bot \\
- & + & 0 & - & \top & \bot \\
0 & \bot & \bot & \bot & \bot & \bot \\
+ & - & 0 & + & \top & \bot \\
\top & \top & \top & \top & \top & \bot \\
\bot & \bot & \bot & \bot & \bot & \bot \\
\end{array}
\]
The Abstract Domain

- Our abstract domain forms a **lattice**
 - A partial order is induced by γ
 $$a_1 \leq a_2 \text{ iff } \gamma(a_1) \subseteq \gamma(a_2)$$
 - We say that a_1 is more precise than a_2!
 - Every **finite subset** has a least-upper bound (lub) and a greatest-lower bound (glb)
Lattice Facts

• A lattice is **complete** when all subsets have lub and glb
 - Even infinite ones

• Every finite lattice is complete

• Every complete lattice is a CPO
 - Since a chain is a subset

• Not every CPO is a complete lattice
 - Might not even be a lattice
More Lattice Facts

• Early work in denotational semantics used lattices
 - But it was latter seen that only chains need to have lub
 - And there was no need for \top and \bot

• In abstract interpretation we’ll use \top to denote “I don’t know”
 - Corresponds to all values in the concrete domain
More Definitions

• We can start with the abstraction function
 \[\beta : C \to A \] (maps a concrete value to the best abstract value)
 - \(A \) must be a lattice

• From here we can derive the concretization function
 \[\gamma : A \to \mathcal{P}(C) \]
 \[\gamma(a) = \{ x \in C \mid \beta(x) \leq a \} \]

• And the abstraction for sets
 \[\alpha : \mathcal{P}(C) \to A \]
 \[\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \} \]
Example

• Consider our sign lattice

\[\beta(n) = \begin{cases} + & \text{if } n > 0 \\ 0 & \text{if } n = 0 \\ - & \text{if } n < 0 \end{cases} \]

• \(\alpha(S) = \text{lub} \{ \beta(x) \mid x \in S \} \)
 - Example: \(\alpha(\{1, 2\}) = \text{lub} \{ + \} = + \)
 - \(\alpha(\{1, 0\}) = \text{lub} \{ +, 0 \} = \top \)
 - \(\alpha(\{\}) = \text{lub} \{\} = \bot \)

• \(\gamma(a) = \{ n \mid \beta(n) \leq a \} \)
 - Example: \(\gamma(+) = \{ n \mid \beta(n) \leq + \} = \{ n \mid \beta(n) = + \} = \{ n \mid n > 0 \} \)
 - \(\gamma(\top) = \{ n \mid \beta(n) \leq \top \} = \mathbb{Z} \)
 - \(\gamma(\bot) = \{ n \mid \beta(n) \leq \bot \} = \emptyset \)
Galois Connections

- We can show that
 - γ and α are monotonic (with the \subseteq ordering on $\mathcal{P}(C)$)
 - $\alpha(\gamma(a)) = a$ for all $a \in A$
 - $\gamma(\alpha(S)) \supseteq S$ for all $S \in \mathcal{P}(C)$

- Such a pair of functions is called a **Galois connection**
 - Between lattices A and $\mathcal{P}(C)$
Correctness Condition

- In general, abstract interpretation satisfies the following diagram

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]

\[
\begin{array}{ccc}
\text{Exp} & \xrightarrow{\sigma} & A \\
\text{C} & \xrightarrow{\in} & \mathcal{P}(C)
\end{array}
\]
Correctness Conditions

Conditions for correct abstract interpretations

1. α and γ are monotonic

2. α and γ form a Galois connection

3. Abstraction of operations is correct
 \[a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2)) \]
So far

- Introduced abstract interpretation

- Two mappings form a Galois connection
 - An abstraction mapping from concrete to abstract values
 - A concretization mapping from abstract to concrete values

- Next look a bit more at Galois connections

- Then extend these ideas from expressions to programs
Why Galois Connections?

- We have an abstract domain A
 - An abstraction function $\beta : \mathbb{Z} \to A$
 - Induces $\alpha : \mathcal{P}(\mathbb{Z}) \to A$ and $\gamma : A \to \mathcal{P}(\mathbb{Z})$

- We argued that for correctness
 \[\gamma(a_1 \text{ op } a_2) \supseteq \gamma(a_1) \text{ op } \gamma(a_2) \]
 - We wish for the set on the left to be as small as possible
 - To reduce the loss of information through abstraction

- For each set $S \subseteq C$, define $\alpha(S)$ as follows:
 - Pick S' the smallest that includes S and is in the image of γ
 - Define $\alpha(S) = \gamma^{-1}(S')$
 - Then we define: $a_1 \text{ op } a_2 = \alpha(\gamma(a_1) \text{ op } \gamma(a_2))$

- Then α and γ form a Galois connection
Abstract Interpretation for Imperative Programs

• So far we abstracted the value of expressions

• We want now to abstract the state at each point in the program

• First we define the concrete semantics that we are abstracting
 - We use a collecting semantics
The Collecting Semantics

• Recall
 - A state $\sigma \in \Sigma = \text{Var} \rightarrow \mathbb{Z}$
 - States vary from program point to program point

• We introduce a set of program points: Labels

• We want to answer questions like:
 - Is x always positive at label i?
 - Is x always greater or equal to y at label j?

• To answer these questions it helps to construct

 $$C \in \text{Contexts} = \text{Labels} \rightarrow \mathcal{P}(\Sigma)$$

 - For each label, all the states at that label
 - This is called the collecting semantics of the program

• How can we define the collecting semantics?
Defining the Collecting Semantics

• We first define relations between the collecting semantics at different labels
 - We do it for a flowchart program
 - It can be done for IMP with careful definition of program points
• Define a label on each edge in the flowchart
• For assignment

\[C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land [e]_\sigma = n \} \]
Defining the Collecting Semantics

• For conditionals

\[C_j = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = false \} \]
\[C_k = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = true \} \]
Defining the Collecting Semantics

• For a join

\[C_k = C_i \cup C_j \]

• Verify that these relations are monotonic
 - If we increase a \(C_i \) all other \(C_j \) can only increase
Collecting Semantics: Example

- Consider the following program (assume x ≥ 0 initially)

\[C_1 = \{ \sigma \mid \sigma(x) \geq 0 \} \]
\[C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \]
\[\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \]
\[C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \]
\[C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \]
\[C_4 = \{ \sigma[y:=\sigma(y)*\sigma(x)] \mid \sigma \in C_3 \} \]
The Collecting Semantics

• We have an equation with the unknown C
 - The equation is defined by a monotonic and continuous function on the domain \(\text{Labels} \to \mathcal{P}(\Sigma) \)

• We can use the least fixed-point theorem
 - We start with $C^0 = \lambda L. \emptyset$
 - We apply the relations between C_i and C_j to construct C^1_i from C^0_j
 - We stop when $C^k = C^{k-1}$
 - The problem is that we’ll go on forever for most programs
 - But we know the fixed point exists
Collecting Semantics: Example

• Consider the following program (assume $x \geq 0$ initially)

- $y := 1$
- $x == 0$
- $y := y \times x$
- $x := x - 1$

$C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}$
$C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \}$
$C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}$
$C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}$
$C_4 = \{ \sigma[y:=\sigma(y)*\sigma(x) \mid \sigma \in C_3 \}$
Collecting Semantics: Example

- Consider the following program (assume \(x \geq 0 \) initially)

\[
\begin{align*}
1 & \{ x \geq 0 \} \\
\text{y := 1} & \\
\text{x == 0} & \\
\text{y := y * x} & \\
\text{x := x - 1} & \\
\end{align*}
\]

\[
C_1 = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 = \{ \sigma[y:=\sigma(y)\cdot\sigma(x)] \mid \sigma \in C_3 \}
\]
Collecting Semantics: Example

• Consider the following program (assume $x \geq 0$ initially)

\[
C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}
\]

\[
C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}
\]

\[
\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \}
\]

\[
C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}
\]

\[
C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\]

\[
C_4 = \{ \sigma[y:=\sigma(y) \cdot \sigma(x)] \mid \sigma \in C_3 \}
\]
Collecting Semantics: Example

Consider the following program (assume \(x \geq 0\) initially)

1. \(\{x \geq 0\}\)

2. \(\{x \geq 0, y = 1\}\)

3. \(\{x > 0, y = 1\}\)

4. \(\{x = 0, y = 1\}\)

5. \(\{x = 0, y = 1\}\)

\(C_1 = \{\sigma \mid \sigma(x) \geq 0\}\)

\(C_2 = \{\sigma[y := 1] \mid \sigma \in C_1\} \cup \{\sigma[x := \sigma(x)-1] \mid \sigma \in C_4\}\)

\(C_3 = C_2 \cap \{\sigma \mid \sigma(x) \neq 0\}\)

\(C_5 = C_2 \cap \{\sigma \mid \sigma(x) = 0\}\)

\(C_4 = \{\sigma[y := \sigma(y) \cdot \sigma(x)] \mid \sigma \in C_3\}\)
Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

\[
\begin{align*}
\text{1} & \quad \{ x \geq 0 \} \\
\text{y := 1} & \\
\text{2} & \quad \{ x \geq 0, y = 1 \} \\
\text{x := x - 1} & \\
\text{x == 0} & \\
\text{y := y * x} & \\
\text{3} & \quad \{ x > 0, y = 1 \} \\
\text{F} & \\
\text{4} & \quad \{ x > 0, y = x \} \\
\text{x := y * x} & \\
\text{5} & \quad \{ x = 0, y = 1 \} \\
\text{T} & \\
\end{align*}
\]

\[
\begin{align*}
C_1 &= \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 &= \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
 & \quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 &= C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 &= C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 &= \{ \sigma[y:=\sigma(y)\cdot\sigma(x)] \mid \sigma \in C_3 \}
\end{align*}
\]
Collecting Semantics: Example

• Consider the following program (assume $x \geq 0$ initially)

1 \{ $x \geq 0$ \}

2 \{ $x \geq 0, y = 1$ \}

3 \{ $x > 0, y = 1$ \}

4 \{ $x > 0, y = x$ \}

5 \{ $x = 0, y = 1$ \}

\[
C_1 = \{ \sigma \mid \sigma(x) \geq 0 \}
\]

\[
C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \}
\]

\[
\cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \}
\]

\[
C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \}
\]

\[
C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \}
\]

\[
C_4 = \{ \sigma[y:=\sigma(y) \ast \sigma(x)] \mid \sigma \in C_3 \}
\]
Collecting Semantics: Example

- Consider the following program (assume $x \geq 0$ initially)

```
y := 1
x == 0
y := y * x
x := x - 1
```

\[
C_1 = \{ \sigma \mid \sigma(x) \geq 0 \} \\
C_2 = \{ \sigma[y:=1] \mid \sigma \in C_1 \} \\
\quad \cup \{ \sigma[x:=\sigma(x)-1] \mid \sigma \in C_4 \} \\
C_3 = C_2 \cap \{ \sigma \mid \sigma(x) \neq 0 \} \\
C_5 = C_2 \cap \{ \sigma \mid \sigma(x) = 0 \} \\
C_4 = \{ \sigma[y:=\sigma(y)\times\sigma(x)] \mid \sigma \in C_3 \}
\]
Abstract Interpretation

- We pick a complete lattice A (abstractions for $\mathcal{P}(\Sigma)$)
 - Along with a monotonic abstraction $\alpha : \mathcal{P}(\Sigma) \to A$
 - Alternatively, pick $\beta : \Sigma \to A$
 - This uniquely defines its Galois connection γ

- We take the relations between C_i and move them to the abstract domain:
 $$a \in \text{Labels} \to A$$

- Assignment

 Concrete: $C_j = \{ \sigma[x := n] \mid \sigma \in C_i \land [e]\sigma = n \}$

 Abstract: $a_j = \alpha \{ \sigma[x := n] \mid \sigma \in \gamma(a_i) \land [e]\sigma = n \}$
Abstract Interpretation

• **Conditional**

 Concrete: \(C_j = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = \text{false} \} \) and
 \[C_k = \{ \sigma \mid \sigma \in C_i \land \llbracket b \rrbracket \sigma = \text{true} \} \]

 Abstract: \(a_j = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land \llbracket b \rrbracket \sigma = \text{false} \} \) and
 \(a_k = \alpha \{ \sigma \mid \sigma \in \gamma(a_i) \land \llbracket b \rrbracket \sigma = \text{true} \} \)

• **Join**

 Concrete: \(C_k = C_i \cup C_j \)

 Abstract: \(a_k = \alpha (\gamma(a_i) \cup \gamma(a_j)) = \text{lub} \{a_i, a_j\} \)
Least Fixed-Points in the Abstract Domain

• Now we have a recursive equation with unknown “a”
 - Defined by a monotonic and continuous function on the domain
 Labels → A

• We can use the least fixed-point theorem:
 - Start with \(a^0 = \lambda L. \bot \)
 - Apply the monotonic function to compute \(a^{k+1} \) from \(a^k \)
 - Stop when \(a^{k+1} = a^k \)

• Exactly the same computation as for the collecting semantics
 - What is new?
Least Fixed Point in Abstract Domain

• We have a hope of termination

• The classic setup is when A has only uninteresting chains (finite number of elements in each chain)
 - We say that A has finite height (say h)

• In this case the computation takes at most $O(h \times |Labels|^2)$ steps
 - At each step “a” makes progress on at least one label
 - We can only make progress h times
 - And each time we must compute $|Labels|$ elements

• This is a quadratic analysis: good news
Abstract Interpretation: Example

- Consider the following program

```
    y := 1
    x == 0
    y := y * x
    x := x - 1
```

We want to do sign analysis on it
The Abstract Domain for Sign Analysis

- Consider the complete lattice $S = \{ \bot, -, 0, +, \top \}$

- From it construct the complete lattice $A = \{x, y\} \rightarrow S$
 - With point-wise ordering as usual
 - The abstract state consists of the sign for x and y

- We start with $a^0 = \lambda L. \lambda v \in \{x,y\}. \bot$
Example

<table>
<thead>
<tr>
<th>Label</th>
<th>Iterations \rightarrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$x \quad +$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y \quad \top$</td>
</tr>
<tr>
<td>2</td>
<td>$x \quad \bot \quad +$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y \quad \bot \quad +$</td>
</tr>
<tr>
<td>3</td>
<td>$x \quad \bot \quad +$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y \quad \bot \quad +$</td>
</tr>
<tr>
<td>4</td>
<td>$x \quad \bot \quad +$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y \quad \bot \quad +$</td>
</tr>
<tr>
<td>5</td>
<td>$x \quad \bot \quad 0$</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$y \quad \bot \quad +$</td>
</tr>
<tr>
<td></td>
<td>$y \quad \bot \quad \top$</td>
</tr>
</tbody>
</table>

ECS 240 Lecture 8-9

45
Notes

• We abstracted the state of each variable independently
 \[A = \{x, y\} \rightarrow \{\bot, -, 0, +, \top\} \]

• We lost relationships between variables
 - E.g., that at a point \(x \) and \(y \) are always of the same sign
 - In the previous abstraction we get \(\{x := \top, y := \top\} \) at 2

• We can also abstract the state as a whole
 \[A = \mathcal{P}(\{\bot, -, 0, +, \top\} \times \{\bot, -, 0, +, \top\}) \]
 - For the previous example we now get the abstraction \(\{(0, +), (+, +)\} \) at 2
Other Abstract Domains

• Range analysis
 - Lattice of ranges: \(R = \{ \bot, [n..m], (-\infty, m], [n, +\infty), \top \} \)
 - It is a complete lattice
 • \([n..m] \cup [n'..m'] = [\min(n, n')..\max(m, m')]\]
 • \([n..m] \cap [n'..m'] = [\max(n, n')..\min(m, m')]\]
 • With appropriate care in dealing with \(\infty \)
 - \(\beta : \mathbb{Z} \to R \) such that \(\beta(n) = [n..n] \)
 - \(\alpha : \mathcal{P}(\mathbb{Z}) \to R \) such that \(\alpha(S) = \lub \{ \beta(n) \mid n \in S \} = [\min(S)..\max(S)] \)
 - \(\gamma : R \to \mathcal{P}(\mathbb{Z}) \) such that \(\gamma(r) = \{ n \mid n \in r \} \)

• This lattice has infinite-height chains
 - So the abstract interpretation might not terminate!
Example of Non-Termination

• Consider this (common) program fragment

```
i := 0
i <= n
i := i + 1
```

We want to do range analysis for it
Example of Non-Termination

• Consider the sequence of abstract states at point 2
 - [0..0], [0..1], [0..2], ...
 - The analysis never terminates
 - Or terminates very late if the loop bound is known statically

• It is time to approximate even more: widening
• We redefine the join (lub) operator of the lattice to ensure that from [0..0] upon union with [1..1] the result is [0..+∞) and not [0..1]
• Now the sequence of states is
 - [0..0], [0, +∞), [0, +∞) Done (no more infinite chains)
Other Abstract Domains

• Linear relationships between variables
 - A convex polyhedron is a subset of \mathbb{Z}^k whose elements satisfy a number of inequalities: $a_1 x_1 + a_2 x_2 + ... + a_k x_k \geq c$
 - This is a complete lattice. Use linear programming methods for computing lub

• Linear relationships with at most two variables
 - Like convex polyhedra but with at most two variables per constraint
 - Octagons: $x \pm y \geq c$ have efficient algorithms

• Modulo constraints
 - E.g. even and odd
Summary of Abstract Interpretation

• AI is a very powerful technique that underlies a large number of program analyses

• AI can also be applied to functional and logic programming languages

• There are a few success stories
 - Strictness analysis for lazy functional languages
 - PolySpace for linear constraints

• In most other cases however AI is still slow

• When the lattices have infinite height and widening heuristics are used the result becomes unpredictable