1. Linear filters

Image formation

- Light to discrete pixel arrays
- Images in Matlab

Image noise (as motivation for linear filtering)

- Types of noise

Correlation/convolution filtering with linear filters

- 1D and 2D examples
- Definition of correlation
- Implementation detail: handling boundaries
- Smoothing filters
 - Averaging/box filter
 - Gaussian filter
 - Impact of filter width in smoothing
 - Properties
- Definition of convolution
- Examples: predicting linear filter outputs
- Properties of convolution
- Separability

Median filter, an example of a non-linear smoothing filter

2. Edge detection and image gradients

Computing image gradients with convolution

- Partial derivatives in x and y via finite differences
- Other popular finite difference derivative masks
- Properties of the gradient: direction, magnitude
- Impact of noise, counteracting with smoothing
 - Smoothing and differentiating with derivative of Gaussian filters
 - Laplacian of Gaussian filter for edges
 - Impact of smoothing scale on edges found
- Compare: mask properties for smoothing vs. derivatives
- Application with image gradients: seam carving
Energy function definition
Greedy solution
Optimal solution with dynamic programming

3. Edges, contours, and binary image analysis

Edge detection
- Basic pipeline: smooth, enhance, localize
- Thresholding a gradient image for edges
- Canny edge detector
 - Non-maximum suppression
 - Hysteresis
- Low-level edges vs. perceived contours

Chamfer matching: comparing shapes from edges
- Definition of the Chamfer distance
- Computing Chamfer efficiently with the distance transform
 - Definition of the distance transform
 - Efficiently computing the distance transform
 - Using distance transform to get Chamfer distances against template
- Properties of Chamfer matching

Binary image analysis
- Thresholding to create a binary image
- Morphological operators
 - Dilation
 - Erosion

4. Texture

What is texture? What is it useful for?

Psychophysics of texture, “Textons” as primitive units of texture Texture representation
- Detect local patterns
- Describe their statistics
 - Example with gradients
- Compute distances in texture descriptor space
- Scale of a texture pattern
• Filter banks
 o Example application
 o Name that filter bank response
• Applications of texture representations

Non-parametric texture synthesis

• Markov chains, Markov random fields
• Text synthesis example
• Analogy for texture generation in images
• Image quilting extension
 o Minimum error boundary computation

5. Segmentation and grouping

Grouping problems in vision
Inspiration from human perception, Gestalt properties

Bottom-up segmentation via clustering
• Mode finding and mean shift
 o k-means:
 ▪ Algorithm definition
 ▪ Pros and cons
 ▪ Examples of feature spaces: color, intensity,…
 ▪ Texton histograms; clustering for feature space quantization
 o Mean-shift:
 ▪ Algorithm sketch
 ▪ Pros and cons

• Graph-based:
 • Images as graphs
 • Measuring affinity between nodes
 • Minimum cut
 • Normalized cuts; objective definition, pros and cons

Segmentation by cutting graphs

Graph definition
 • Visualizing affinity matrices
Min cut and Normalized cut
 • Objectives
 • Pros and cons
6. Fitting

Hough Transform for lines
- Image space vs. parameter space and concept of voting
- Complete Hough Transform algorithm for lines
- Examples: interpreting Hough space, strengths and weaknesses
- Extensions to the basic approach: esp., using gradient direction
- Computational complexity

Hough Transform for circles
- Parameterization
- Variants depending on (un)known gradient direction, radius

Voting/Hough recap
- Strengths and weaknesses of the approach

Generalized Hough Transform
- Offline training for arbitrary shape model
- Detection of shapes in novel images
- Applicability beyond shape fitting

7. Alignment and fitting

- Feature-based alignment
 - Definition of alignment, place in fitting
 - 2D transformations
 - Parametric transformations
 - Representing with matrices, homogeneous coordinates
 - Affine fit
 - Fitting with least squares given correspondences
 - What are the correspondences?
 - Number of correspondences needed?
 - Recognition by alignment
 - Problem: outliers
 - RANSAC
 - Algorithm definition
 - RANSAC for line fitting (example)
 - Pros and cons

- Homography and image reprojection
 - Perspective projection intuition
 - Connection to image mosaics
 - Solving for homographies
 - Number of correspondences needed?
 - Applying with 2d image warping (forward, inverse)
 - Using homographies to manipulate images: rectification, stitching
8. Local invariant feature detection and description

Overview of main components:
1. Detection: find the interest points
2. Description: extract a descriptor for each one
3. Matching: determine correspondence

Desirable properties: repeatability during detection, distinctiveness during description

Detection
- **Rotation invariant** interest point detection
 - Harris corner detection: review of measure, main steps, properties
- **Scale invariant** interest point detection
 - Intuition behind automatic scale selection
 - Laplacian of Gaussian filter: 1d, 2d
 - Characteristic scale selection
 - Interest point detection across an image
 - Laplacian approximated as DoG in practice

Description
- Desired invariance properties: geometric and photometric transformations
- Simplest solution: SSD on patch intensity
- SIFT descriptor
 - Definition
 - Rotation invariance

Matching
- Generating candidate matches
- Eliminating ambiguous matches
- Robust alignment pipeline using detection, description, and matching.
- Applications

9. Indexing local features and applications to visual search

- Visual words: Quantizing local descriptor space
 - Connection to textons
 - Issues in visual vocabulary formation
- Bag of words representation and matching
 - Comparing bags of words
 - Tf-idf weighting
 - Scoring retrieval results with precision recall
 - Pros and cons
10. Instance recognition

- Motivation: visual search

- Visual words
 - Feature space quantization (recap)
 - Indexing with inverted file
 - Issues in visual vocabulary formation
 - Bag of words representation and comparisons
 - Vocabulary trees for large vocabularies
 - Pros and cons of visual words

- Spatial verification strategies, using affine transformation
 - RANSAC
 - Example applications, evaluating retrieval results with precision recall

- More text retrieval influence
 - Tf-idf weighting
 - Query expansion

11. Generic category recognition

Introduction to the problem: applications, challenges, state-of-the-art
Basic pipeline of category recognition techniques
Supervised classification

- Definition
- Example with skin color detection

12. Window-based models for generic object detection

Basic pipeline for generic category recognition with a window-based representation
- Representation choice: pixels, gradients, colors
- Discriminative classifier choice
- Sliding windows to generate candidates
- Classifier to score candidates

Boosting classification algorithm
- Intuition
- Weights on training samples
- Training process
- Pros and cons
Viola-Jones face detector: a prime example of window-based object detection

- Overview
- Feature definition: rectangular features, integral images
- Selecting discriminative features among all candidates with Adaboost
- Attentional cascade of classifiers
- Summary of detector pipeline
- Example results

Strengths and weaknesses of window-based detection paradigm

13. Discriminative classifiers for image recognition

- Nearest neighbors and k-nearest neighbors
 - Definition of algorithm
 - Example for scene/location recognition, global “Gist” descriptor
 - Pros and cons

- Support vector machines (SVM)
 - Large margin motivation
 - Definition of algorithm for linear case, solution
 - Non-linear SVMs and the kernel trick
 - Multi-class classification via binary SVMs
 - Example for gender classification
 - Pros and cons

14. Deep learning

- Linear perceptron
- Simple backpropagation example
- Multi-layer neural network
 - Neural network properties
 - Detection (testing) process
- Convolutional neural network
 - Convolution, Non-linearity, spatial pooling, feature maps

15. Deep neural networks II

- Why (convolutional) neural networks?
- Neural network definition
 - Nonlinear classifier
 - Can approximate any continuous function to arbitrary accuracy given sufficiently many hidden units
 - Activations
Nonlinear activation function h (e.g. sigmoid, ReLU)

- Multilayer networks
 - Cascade neurons together
 - Output from one layer is the input to the next
 - Each layer has its own sets of weights
 - Depth = power (usually)

- How do we train them?
 - The goal is to iteratively find a set of weights that allow the activations/outputs to match the desired output
 - minimize a loss function
 - loss function quantifies the agreement between the predicted scores and GT labels
 - Classification goal; Hinge loss, Softmax (cross-entropy)

- How to minimize the loss function?
 - Loss gradients: how the loss changes as a function of the weights
 - We want to change the weights in such a way that makes the loss decrease as fast as possible

- Gradient descent
 - Update weights iteratively
 - Mini-batch gradient descent
 - Cycle through all training examples multiple times
 - Epoch

- Learning rate selection

- Gradient descent in multi-layer nets
 - How to update the weights at all layers?
 - Backpropagation
 - computational graphs