
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Last time

\qquad

- Feature-based alignment \qquad
-2D transformations
- Affine fit
- RANSAC \qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Motivation for feature-based alignment:
Recognition

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Parametric (global) warping \qquad
Examples of parametric warps:

Parametric (global) warping

\qquad
\qquad
\qquad
Transformation T is a coordinate-changing machine:
$\mathrm{p}^{\prime}=T(\mathrm{p})$
What does it mean that T is global? \qquad

- Is the same for any point p
- can be described by just a few numbers (parameters) Let's represent T as a matrix: \qquad
$\mathrm{p}^{\prime}=\mathrm{Mp}$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}x \\ y\end{array}\right]$ \qquad
\qquad

Homogeneous coordinates

\qquad
To convert to homogeneous coordinates:

$$
\begin{gathered}
(x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
\text { homogeneous image } \\
\text { coordinates }
\end{gathered}
$$

\qquad
\qquad
\qquad
Converting from homogeneous coordinates

$$
\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

\qquad
\qquad

Slide credit: Kristen Grauman \qquad

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
w
\end{array}\right]
$$

Affine transformations are combinations of ..

- Linear transformations, and
- Translations

Parallel lines remain parallel

Slide credit: Kristen Grauman

Projective Transformations

$$
\left[\begin{array}{c}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation?

RANSAC: General form

\qquad

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers

RANSAC example: Translation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC example: Translation \qquad

\qquad
\qquad
\qquad
\qquad
\qquad

17

RANSAC pros and cons \qquad

- Pros
- Simple and general
- Applicable to many different problems
\qquad
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations, or can fail completely)

Today
- Image mosaics
- Fitting a 2D transformation
• Homography
- 2D image warping
- Computing an image mosaic

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

HP frames commercial
• $\frac{\text { http://www.youtube.com/watch?v=2RPI5vPEo }}{\underline{\text { ak }}}$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Pinhole camera

- Pinhole camera is a simple model to approximate imaging process, perspective projection. \qquad

\qquad
\qquad
\qquad
If we treat pinhole as a point, only one ray from any given point can enter the camera.
\qquad
\qquad

Mosaics: generating synthetic views

\qquad
\qquad
\qquad
\qquad

Can generate any synthetic camera view as long as it has the same center of projection!

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't preserved
- but must preserve straight lines
called Homography

$$
\underset{\mathbf{p}}{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]}=\frac{\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
I
\end{array}\right]}{\mathbf{H}} \mathbf{p}
$$

The projective plane

Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
What is the geometric intuition?
- a point in the image is a ray in projective space

- Each point (x, y) on the plane is represented by a ray $(\mathrm{sx}, \mathrm{sy}, \mathrm{s})$
- all points on the ray are equivalent: $(x, y, 1) \cong(s x, s y, s)$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Upto a scale factor.
Constraint Frobenius norm of H to be 1 .

Problem to be solved:

$$
\min \|A h-b\|^{2}
$$

$$
\text { s.t. }\|h\|^{2}=1
$$

where vector of unknowns $\mathrm{h}=\left[h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22}\right]^{\top}$

Solving for homographies

Defines a least squares problem: \quad minimize $\|A h-0\|^{2}$

- Since \mathbf{h} is only defined up to scale, solve for unit vector $\hat{\mathbf{h}} \quad$ (i.e., $\|h\|^{2}=1$)
- Solution: $\mathbf{h}=$ eigenvector of $\mathbf{A}^{\top} \mathbf{A}$ with smallest eigenvalue
- Works with 4 or more points

Image warping

\qquad
\qquad
\qquad

Given a coordinate transform and a source image
\qquad $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$? \qquad
\qquad

Forward warping
\qquad
\qquad
\qquad
\qquad
Send each pixel $f(x, y)$ to its corresponding location $\left(x^{\prime}, y^{\prime}\right)=T(x, y)$ in the second image
Q: what if pixel lands "between" two pixels?

Forward warping

\qquad
\qquad
\qquad
\qquad
Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=T(x, y) \text { in the second image }
$$

\qquad
Q: what if pixel lands "between" two pixels?
A: distribute color among neighboring pixels (x^{\prime}, y^{\prime}) - Known as "splatting" ${ }^{39}$
\qquad
\qquad

Inverse warping

\qquad
\qquad
\qquad
Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?

Inverse warping \qquad
\qquad

\qquad
\qquad
Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear..
>> help interp2

$$
\square
$$

$$
41
$$

Bilinear interpolation

Sampling at $f(x, y)$:

$f(x, y)=(1-a)(1-b) \quad f[i, j]$

$$
+a(1-b) \quad f[i+1, j]
$$

\qquad
\qquad
\qquad
\qquad
\qquad

$$
+a b \quad f[i+1, j+1]
$$

$$
+(1-a) b \quad f[i, j+1]
$$

\qquad

Slide from Alyosha Efros

$$
2
$$

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
\qquad
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC for estimating

 homography- RANSAC loop: \qquad
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute inliers where $\operatorname{SSD}\left(p_{i}{ }^{\prime}, \boldsymbol{H} p_{i}\right)<\varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop: \qquad
- Hypothesize transformation T (small group of putative matches that are related by T) \qquad
- Verify transformation (search for other 60 matches consistent with T) Source: L. Lazebn \qquad

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T)

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Perform image warping (inverse)
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Slide credit: Kristen Grauman \qquad .

\qquad

