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Image warping and stitching
May 2nd, 2019

Yong Jae Lee

UC Davis

Last time

• Feature-based alignment
– 2D transformations

– Affine fit

– RANSAC
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Alignment problem

• In alignment, we will fit the parameters of some 
transformation according to a set of matching feature 
pairs (“correspondences”).
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Slide credit: Adapted by Devi Parikh from Kristen Grauman
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Main questions

T

T

Warping: Given a 
source image and a 
transformation, what 
does the transformed 
output look like?

Alignment: Given two 
images, what is the 
transformation between 
them?

Slide credit: Kristen Grauman
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Motivation for feature-based alignment:
Recognition 

Figures from David Lowe
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Slide credit: Kristen Grauman

Motivation for feature-based alignment:
Medical image registration
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Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

Motivation for feature-based alignment:
Image mosaics
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Parametric (global) warping

Examples of parametric warps:

translation rotation aspect

affine
perspective

Source: Alyosha Efros
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Parametric (global) warping

Transformation T is a coordinate-changing machine:

p’ = T(p)

What does it mean that T is global?
• Is the same for any point p

• can be described by just a few numbers (parameters)

Let’s represent T as a matrix:

p’ = Mp

T

p = (x,y) p’ = (x’,y’)
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Source: Alyosha Efros
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Homogeneous coordinates

Converting from homogeneous coordinates

homogeneous image 
coordinates

To convert to homogeneous coordinates:
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Slide credit: Kristen Grauman

2D Affine Transformations

Affine transformations are combinations of …

• Linear transformations, and

• Translations

Parallel lines remain parallel
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Slide credit: Kristen Grauman
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Projective Transformations

Projective transformations:

• Affine transformations, and

• Projective warps

Parallel lines do not necessarily remain parallel
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Slide credit: Kristen Grauman
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Fitting an affine transformation

• Assuming we know the correspondences, how do we 
get the transformation?
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Slide credit: Kristen Grauman
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RANSAC: General form

• RANSAC loop:

1. Randomly select a seed group of points on which to 
base transformation estimate (e.g., a group of matches)

2. Compute transformation from seed group

3. Find inliers to this transformation 

4. If the number of inliers is sufficiently large, re-compute  
estimate of transformation on all of the inliers

• Keep the transformation with the largest number of 
inliers

Slide credit: Kristen Grauman
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RANSAC example: Translation

Select one match, count inliers

15
Source: Rick Szeliski
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RANSAC example: Translation

Select one match, count inliers
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RANSAC example: Translation

Find “average” translation vector
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RANSAC pros and cons

• Pros
• Simple and general

• Applicable to many different problems

• Often works well in practice

• Cons
• Lots of parameters to tune

• Doesn’t work well for low inlier ratios (too many iterations, 
or can fail completely)

Lana Lazebnik
18
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Today

• Image mosaics
– Fitting a 2D transformation

• Homography

– 2D image warping

– Computing an image mosaic
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HP frames commercial

• http://www.youtube.com/watch?v=2RPl5vPEo
Qk
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Mosaics

Obtain a wider angle view by combining multiple images.
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Slide credit: Kristen Grauman
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Panoramic Photos are old

• Sydney, 1875

Beirut, late 1800’s

Slide credit: James Hays

How to stitch together a panorama 
(a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– (If there are more images, repeat)

• …but wait, why should this work at all?

– What about the 3D geometry of the scene?

– Why aren’t we using it?

Source: Steve Seitz
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Pinhole camera

• Pinhole camera is a simple model to approximate 
imaging process, perspective projection.

Fig from Forsyth and Ponce

If we treat pinhole as a point, only one ray 
from any given point can enter the camera.

Virtual 
image

pinhole

Image 
plane

Slide credit: Kristen Grauman
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Mosaics: generating synthetic views

real
camera

synthetic
camera

Can generate any synthetic camera view
as long as it has the same center of projection!

Source: Alyosha Efros
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Mosaics

Obtain a wider angle view by combining multiple images.
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Slide credit: Kristen Grauman
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mosaic Projective Plane (PP)

Image reprojection

The mosaic has a natural interpretation in 3D
• The images are reprojected onto a common plane
• The mosaic is formed on this plane
• Mosaic is a synthetic wide-angle camera

Source: Steve Seitz
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Image reprojection

Basic question
• How to relate two images from the same camera center?

– how to map a pixel from PP1 to PP2

PP2

PP1

Answer
• Cast a ray through each pixel in PP1

• Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D 
reprojection, think of it as a 2D 
image warp from one image to 
another.

Source: Alyosha Efros
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Image reprojection: Homography

A projective transform is a mapping between any two PPs 
with the same center of projection
• rectangle should map to arbitrary quadrilateral 

• parallel lines aren’t preserved

• but must preserve straight lines

called Homography PP2
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Source: Alyosha Efros
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(0,0,0)

The projective plane

Why do we need homogeneous coordinates?
• represent points at infinity, homographies, perspective 

projection, multi-view relationships

What is the geometric intuition?
• a point in the image is a ray in projective space

(sx,sy,s)

• Each point (x,y) on the plane is represented by a ray (sx,sy,s)
– all points on the ray are equivalent:  (x, y, 1) ≅(sx, sy, s)

image plane

(x,y,1)

-y

x-z
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Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

 22 , yx  22 , yx

…

…

 nn yx ,  nn yx  ,

Slide credit: Kristen Grauman
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Solving for homographies

Upto a scale factor.

Constraint Frobenius norm of H to be 1.

Problem to be solved:

where vector of unknowns h = [h00,h01,h02,h10,h11,h12,h20,h21,h22]T
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Solving for homographies
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Solving for homographies

A h 0

Defines a least squares problem:

2n × 9 9 2n

• Since h is only defined up to scale, solve for unit vector ĥ

• Solution: ĥ = eigenvector of ATA with smallest eigenvalue

• Works with 4 or more points
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To apply a given homography H
• Compute p’ = Hp (regular matrix multiply)

• Convert p’ from homogeneous to image 
coordinates

Slide credit: Kristen Grauman 35

Today

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
– Fitting a 2D transformation

• Homography

– 2D image warping

– Computing an image mosaic

36
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Image warping

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed 
image g(x’,y’) = f(T(x,y))?

x x’

T(x,y)

f(x,y) g(x’,y’)

y y’

Slide from Alyosha Efros
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f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

Slide from Alyosha Efros
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f(x,y) g(x’,y’)

Forward warping

Send each pixel f(x,y) to its corresponding location 

(x’,y’) = T(x,y) in the second image

x x’

T(x,y)

Q:  what if pixel lands “between” two pixels?

y y’

A:  distribute color among neighboring pixels (x’,y’)
– Known as “splatting”

Slide from Alyosha Efros
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f(x,y) g(x’,y’)x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

Q:  what if pixel comes from “between” two pixels?

y’
T-1(x,y)

Slide from Alyosha Efros
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f(x,y) g(x’,y’)x

y

Inverse warping

Get each pixel g(x’,y’) from its corresponding location 

(x,y) = T-1(x’,y’) in the first image

x x’

T-1(x,y)

Q:  what if pixel comes from “between” two pixels?

y’

A:  Interpolate color value from neighbors
– nearest neighbor, bilinear…

Slide from Alyosha Efros

>> help interp2 41

Bilinear interpolation

Sampling at f(x,y):

Slide from Alyosha Efros
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Recap: How to stitch together a 
panorama (a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation (homography) between 
second image and first using corresponding points.

– Transform the second image to overlap with the first.

– Blend the two together to create a mosaic.

– (If there are more images, repeat)

Source: Steve Seitz
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Image warping with homographies

image plane in front image plane below
black area
where no pixel
maps to

Source: Steve Seitz
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Image rectification

p
p’

Slide credit: Kristen Grauman
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Analysing patterns and shapes

Automatically 
rectified floor

The floor (enlarged)

What is the shape of the b/w floor pattern?

Slide from Antonio Criminisi 46

From Martin Kemp The Science of Art
(manual reconstruction)
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Analysing patterns and shapes

Slide from Antonio Criminisi
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Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

Analysing patterns and shapes

What is the (complicated)
shape of the floor pattern?

Slide from Criminisi
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From Martin Kemp, The Science of Art
(manual reconstruction)

Automatic
rectification

Analysing patterns and shapes

Slide from Criminisi
49

Julian Beever: Manual Homographies

http://users.skynet.be/J.Beever/pave.htm

Changing camera center

Does it still work? synthetic PP

PP1

PP2

Source: Alyosha Efros
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Recall: same camera center

real
camera

synthetic
camera

Can generate synthetic camera view
as long as it has the same center of projection.

Source: Alyosha Efros
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…Or: Planar scene (or far away)

PP3 is a projection plane of both centers of projection, 
so we are OK!

This is how big aerial photographs are made

PP1

PP3

PP2

Source: Alyosha Efros
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RANSAC for estimating 
homography

• RANSAC loop:

• 1.  Select four feature pairs (at random)

• 2.  Compute homography H (exact)

• 3.  Compute inliers where SSD(pi’, Hpi)< ε

• 4.  Keep largest set of inliers

• 5.  Re-compute least-squares H estimate 
on all of the inliers

Slide credit: Steve Seitz
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Robust feature-based alignment

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T (small group 

of putative matches that are related by T)

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T (small group 

of putative matches that are related by T)

– Verify transformation (search for other 
matches consistent with T) Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
– Hypothesize transformation T (small group 

of putative matches that are related by T)

– Verify transformation (search for other 
matches consistent with T) Source: L. Lazebnik
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Summary: alignment & warping

• Write 2d transformations as matrix-vector 
multiplication (including translation when we use 
homogeneous coordinates)

• Fitting transformations: solve for unknown 
parameters given corresponding points from two 
views (affine, projective (homography)).

• Perform image warping (inverse)

• Mosaics: uses homography and image warping 
to merge views taken from same center of 
projection. 

Slide credit: Kristen Grauman
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Next time: which features should we match?

Slide credit: Kristen Grauman
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Questions?
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