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Local features and image matching
May 7th, 2019

Yong Jae Lee

UC Davis

Last time

• RANSAC for robust fitting 
– Lines, translation

• Image mosaics
– Fitting a 2D transformation

• Homography
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Today

How to detect which features to match?

Mosaics recap:
How to warp one image to the other, given H?
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How to stitch together a panorama 
(a.k.a. mosaic)?

• Basic Procedure
– Take a sequence of images from the same position

• Rotate the camera about its optical center

– Compute transformation between second image and first

– Transform the second image to overlap with the first

– Blend the two together to create a mosaic

– (If there are more images, repeat)

Source: Steve Seitz
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Mosaics

Obtain a wider angle view by combining multiple images.
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Homography

 11, yx  11, yx 

To compute the homography given pairs of corresponding 
points in the images, we need to set up an equation where 
the parameters of H are the unknowns…

 22 , yx  22 , yx

…

…

 nn yx ,  nn yx  ,
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Solving for homographies

Defined up to a scale factor.

Constrain Frobenius norm of H to be 1.

Problem to be solved:

where vector of unknowns h = [h00,h01,h02,h10,h11,h12,h20,h21,h22]T
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Adapted from Devi Parikh
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There are 9 variables h00,…,h22.
Are there 9 degrees of freedom?

No. We can multiply all hij by nonzero 
scalar k without changing the equations:
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Enforcing 8 DOF

Impose unit vector constraint

Subject to: 
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Projective: # correspondences?

How many correspondences needed for projective?

x x’

T(x,y)
y y’

?

Source: Alyosha Efros
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RANSAC for estimating homography

RANSAC loop:

1.  Select four feature pairs (at random)

2.  Compute homography H (exact)

3.  Compute inliers where SSD(pi’, Hpi)< ε

4.  Keep largest set of inliers

5.  Re-compute least-squares H estimate on all of the inliers

Slide credit: Steve Seitz
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Robust feature-based alignment

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik
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Robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik
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Creating and Exploring a Large 
Photorealistic Virtual Space

Josef Sivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T. 
Freeman, Internet Vision Workshop, CVPR 2008.
http://www.youtube.com/watch?v=E0rboU10rPo 18
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Creating and Exploring a Large 
Photorealistic Virtual Space

Synthesized view from 
new camera

Current view, and 
desired view in green

Induced camera 
motion
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Today

How to detect which features to match?

Mosaics recap:
How to warp one image to the other, given H?
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Detecting local invariant 
features

• Detection of interest points
– Harris corner detection

– (Scale invariant blob detection: LoG)

• (Next time: description of local patches)
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Local features: main components
1) Detection: Identify the 

interest points

2) Description: Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

],,[ )1()1(
11 dxx x

],,[ )2()2(
12 dxx x

Kristen Grauman
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Local features: desired properties

• Repeatability
– The same feature can be found in several images 

despite geometric and photometric transformations 

• Saliency
– Each feature has a distinctive description

• Compactness and efficiency
– Many fewer features than image pixels

• Locality
– A feature occupies a relatively small area of the 

image; robust to clutter and occlusion
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Applications  

• Local features have be used for:
– Image alignment 

– 3D reconstruction

– Motion tracking

– Robot navigation

– Indexing and database retrieval 

– Object recognition

Lana Lazebnik
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A hard feature matching problem

NASA Mars Rover images
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NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Answer below (look for tiny colored squares…)
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Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!
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Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

• Must provide some invariance to geometric 
and photometric differences between the two 
views.

?
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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• What points would you choose (for 
repeatability, distinctiveness)? 30
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Corners as distinctive interest points

We should easily recognize the point by 
looking through a small window

Shifting a window in any direction should give 
a large change in intensity

“edge”:
no change 
along the edge 
direction

“corner”:
significant 
change in all 
directions

“flat” region:
no change in 
all directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov
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Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:
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First, consider an axis-aligned corner:

What does this matrix reveal?
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First, consider an axis-aligned corner:

This means dominant gradient directions align with 
x or y axis

Look for locations where both λ’s are large.

If either λ is close to 0, then this is not corner-like.

What does this matrix reveal?

What if we have a corner that is not aligned with the 
image axes? 

34

What does this matrix reveal?

TXXM 
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The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.

Since M is symmetric, we have

(Eigenvalue decomposition)
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Corner response function

“flat” region
1 and 2 are 
small;

“edge”:
1 >> 2

2 >> 1

“corner”:
1 and 2 are large,
1 ~ 2;

36
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Harris corner detector

1) Compute M matrix for each image window to 
get their cornerness scores.

2) Find points whose surrounding window gave 
large corner response (f > threshold)

3) Take the points of local maxima, i.e., perform 
non-maximum suppression
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Example of Harris application

Kristen Grauman
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Compute corner response at every pixel.

Example of Harris application

Kristen Grauman

39
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Example of Harris application

Kristen Grauman
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Properties of the Harris corner detector

Rotation invariant? Yes

41

Properties of the Harris corner detector

Rotation invariant? 

Translation invariant?

Yes

Yes

42
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Properties of the Harris corner detector

Rotation invariant? 

Translation invariant?

Scale invariant?

All points will be 
classified as edges

Corner !

Yes

No

Yes
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Summary

• Image warping to create mosaic, given homography

• Interest point detection
– Harris corner detector

– Next time: 
• Laplacian of Gaussian, automatic scale selection
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