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Local features:
detection and description

May 9th, 2019

Yong Jae Lee

UC Davis

Today

• Local invariant features
– Detection of interest points

• (Harris corner detection)

• Scale invariant blob detection: LoG

– Description of local patches

• SIFT: Histograms of oriented gradients
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Local features: main components
1) Detection: Identify the 

interest points

2) Description: Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Goal: interest operator repeatability

• We want to detect (at least some of) the 
same points in both images.

• Yet we have to be able to run the detection 
procedure independently per image.

No chance to find true matches!
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Goal: descriptor distinctiveness

• We want to be able to reliably determine 
which point goes with which.

• Must provide some invariance to geometric 
and photometric differences between the two 
views.

?
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Local features: main components
1) Detection: Identify the 

interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Recall: Corners as distinctive interest points

2 x 2 matrix of image derivatives (averaged in 
neighborhood of a point).

Notation:
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Recall: Corners as distinctive interest points
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The eigenvalues of M reveal the amount of 
intensity change in the two principal orthogonal 
gradient directions in the window.

Since M is symmetric, we have

(Eigenvalue decomposition)
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“flat” region
1 and 2 are 
small;

“edge”:
1 >> 2

2 >> 1

“corner”:
1 and 2 are large,
1 ~ 2;

One way to score 
the cornerness:

Recall: Corners as distinctive interest points
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Harris corner detector

1) Compute M matrix for image window surrounding 
each pixel to get its cornerness score.

2) Find points with large corner response (f > 
threshold)

3) Take the points of local maxima, i.e., perform non-
maximum suppression
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Harris Detector: Steps
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Harris Detector: Steps
Compute corner response f
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Harris Detector: Steps
Find points with large corner response: f > threshold
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Harris Detector: Steps
Take only the points of local maxima of f
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Harris Detector: Steps
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Properties of the Harris corner detector

Rotation invariant? Yes
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Properties of the Harris corner detector

Rotation invariant? 

Translation invariant?

Yes

Yes
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Properties of the Harris corner detector

Rotation invariant? 

Translation invariant?

Scale invariant?

All points will be 
classified as edges

Corner !

Yes

No

Yes

18



5/9/2019

7

Scale invariant interest points

How can we independently select interest points in 
each image, such that the detections are repeatable 
across different scales?
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Automatic scale selection

Intuition: 
• Find scale that gives local maxima of some function 

f in both position and scale.

f

region size

Image 1
f

region size

Image 2

s1 s2Slide credit: Kristen Grauman 20

What can be the “signature” function?
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Edge

Second derivative
of Gaussian 
(Laplacian)

Edge = zero crossing
of second derivative

Source: S. Seitz

Recall: Edge detection
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From edges to blobs

• Edge = ripple

• Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian
response will achieve a maximum at the center of
the blob, provided the scale of the Laplacian is
“matched” to the scale of the blob

maximum

Slide credit: Lana Lazebnik
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Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric 
operator for blob detection in 2D
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Blob detection in 2D: scale selection

Laplacian-of-Gaussian = “blob” detector
2
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Blob detection in 2D

We define the characteristic scale as the scale 
that produces peak of Laplacian response

characteristic scale

Slide credit: Lana Lazebnik
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Example

Kristen Grauman 27
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Scale invariant interest points

Interest points are local maxima in both position 
and scale.

Squared filter 
response maps

Kristen Grauman
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Scale-space blob detector: Example

Image credit: Lana Lazebnik
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We can approximate the Laplacian with a 
difference of Gaussians; more efficient to 
implement.

 2 ( , , ) ( , , )xx yyL G x y G x y   

( , , ) ( , , )DoG G x y k G x y  

(Laplacian)

(Difference of Gaussians)

Technical detail

Slide credit: Kristen Grauman
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Local features: main components

1) Detection: Identify the 
interest points

2) Description: Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views
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Geometric transformations

e.g. scale, 
translation, 
rotation

Slide credit: Kristen Grauman
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Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial
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Raw patches as local descriptors

The simplest way to describe the 
neighborhood around an interest 
point is to write down the list of 
intensities to form a feature vector.

But this is very sensitive to even 
small shifts, rotations.

Slide credit: Kristen Grauman

40

SIFT descriptor [Lowe 2004] 

Use histograms to bin pixels within sub-patches 
according to their orientation.

0 2

Why subpatches?

Why does SIFT 
have some 
illumination 
invariance?

Slide credit: Kristen Grauman
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CSE 576: Computer Vision

Making descriptor rotation invariant

Image from Matthew Brown

• Rotate patch according to its dominant gradient 
orientation

• This puts the patches into a canonical orientation.
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• Robust matching technique
• Can handle changes in viewpoint

• Up to about 60 degree out of plane rotation

• Can handle significant changes in illumination
• Sometimes even day vs. night (below)

• Fast and efficient—can run in real time

• Lots of code available
• http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT

Steve Seitz

SIFT descriptor [Lowe 2004] 
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Example

NASA Mars Rover images
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NASA Mars Rover images
with SIFT feature matches
Figure by Noah Snavely

Example

45



5/9/2019

16

SIFT descriptor properties

Invariant to

• Scale 

• Rotation

Partially invariant to

• Illumination changes

• Camera viewpoint

• Occlusion, clutter
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Local features: main components

1) Detection: Identify the 
interest points

2) Description:Extract vector 
feature descriptor 
surrounding each interest 
point.

3) Matching: Determine 
correspondence between 
descriptors in two views

Slide credit: Kristen Grauman
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Matching local features

Kristen Grauman
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Matching local features

?

To generate candidate matches, find patches that have 
the most similar appearance (e.g., lowest SSD)

Simplest approach: compare them all, take the closest (or 
closest k, or within a thresholded distance)

Image 1 Image 2

Kristen Grauman
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Ambiguous matches

To add robustness to matching, can consider ratio: 
distance to best match  / distance to second best match

If low, first match looks good.

If high, could be ambiguous match.

Image 1 Image 2

? ? ? ?

Kristen Grauman
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Matching SIFT Descriptors

Nearest neighbor (Euclidean distance)

Threshold ratio of nearest to 2nd nearest 
descriptor

Lowe IJCV 2004
51
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Recap: robust feature-based alignment

Source: L. Lazebnik
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Recap: robust feature-based alignment

• Extract features

Source: L. Lazebnik
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Recap: robust feature-based alignment

• Extract features

• Compute putative matches

Source: L. Lazebnik
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Recap: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

Source: L. Lazebnik
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Recap: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik
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Recap: robust feature-based alignment

• Extract features

• Compute putative matches

• Loop:
• Hypothesize transformation T (small group of putative 

matches that are related by T)

• Verify transformation (search for other matches consistent 
with T)

Source: L. Lazebnik
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Applications of local invariant features

Wide baseline stereo
Motion tracking
Panoramas
3D reconstruction
Recognition (better for instance matching)
…
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Automatic mosaicing

59
AutoStitch

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]
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Recognition of specific objects, scenes

Rothganger et al. 2003 Lowe 2002

Schmid and Mohr 1997 Sivic and Zisserman, 2003

Kristen Grauman
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Summary

Interest point detection
• Harris corner detector

• Laplacian of Gaussian, automatic scale selection

Invariant descriptors
• Rotation according to dominant gradient direction

• Histograms for robustness to small shifts and 
translations (SIFT descriptor)
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Questions?
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