Today

- Local invariant features
 - Detection of interest points
 - (Harris corner detection)
 - Scale invariant blob detection: LoG
 - Description of local patches
 - SIFT: Histograms of oriented gradients

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

\[x_i = [x_i^{(1)}, \ldots, x_i^{(1)}] \]

3) Matching: Determine correspondence between descriptors in two views

\[x_i = [x_i^{(2)}, \ldots, x_i^{(2)}] \]
Goal: interest operator repeatability

- We want to detect (at least some of) the same points in both images.
- Yet we have to be able to run the detection procedure *independently* per image.

Goal: descriptor distinctiveness

- We want to be able to reliably determine which point goes with which.
- Must provide some invariance to geometric and photometric differences between the two views.

Local features: main components

1) **Detection:** Identify the interest points
2) **Description:** Extract vector feature descriptor surrounding each interest point.
3) **Matching:** Determine correspondence between descriptors in two views
Recall: Corners as distinctive interest points

\[M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix} \]

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).

Notation:

\[I_x \Leftrightarrow \frac{\partial I}{\partial x} \quad I_y \Leftrightarrow \frac{\partial I}{\partial y} \quad I_x I_y \Leftrightarrow \frac{\partial I_x}{\partial x} \frac{\partial I_y}{\partial y} \]

Recall: Corners as distinctive interest points

Since \(M \) is symmetric, we have

\[M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T \]

(Eigenvalue decomposition)

\[MX_i = \lambda_i x_i \]

The eigenvalues of \(M \) reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Recall: Corners as distinctive interest points

"edge":

\[\lambda_1 \gg \lambda_2 \quad \lambda_2 \gg \lambda_1 \]

"corner":

\[\lambda_1 \text{ and } \lambda_2 \text{ are large,} \quad \lambda_1 \approx \lambda_2 \]

"flat" region

\[\lambda_1 \text{ and } \lambda_2 \text{ are small;} \]

One way to score the cornerness:

\[f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \]
Harris corner detector

1) Compute M matrix for image window surrounding each pixel to get its \textit{cornerness} score.
2) Find points with large corner response ($f >$ threshold)
3) Take the points of local maxima, i.e., perform non-maximum suppression

Harris Detector: Steps

Compute corner response f
Harris Detector: Steps

Find points with large corner response: \(f > \text{threshold} \)

Harris Detector: Steps

Take only the points of local maxima of \(f \)
Properties of the Harris corner detector

Rotation invariant? Yes

Translation invariant? Yes

Scale invariant? No

All points will be classified as edges

Corner!
Scale invariant interest points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

Automatic scale selection

Intuition:
• Find scale that gives local maxima of some function \(f \) in both position and scale.

What can be the "signature" function?
Recall: Edge detection

From edges to blobs

- Edge = ripple
- Blob = superposition of two ripples

Spatial selection: the magnitude of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is “matched” to the scale of the blob

Blob detection in 2D

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$
Blob detection in 2D: scale selection

Laplacian-of-Gaussian = “blob” detector

\[\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \]

We define the characteristic scale as the scale that produces peak of Laplacian response.

Example
Scale invariant interest points

Interest points are local maxima in both position and scale.

Scale-space blob detector: Example

We can approximate the Laplacian with a difference of Gaussians; more efficient to implement.

\[L = \sigma^2 \left(G_x(x, y, \sigma) + G_y(x, y, \sigma) \right) \]

(Laplacian)

\[DoG = G(x, y, k\sigma) - G(x, y, \sigma) \]

(Difference of Gaussians)
Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Geometric transformations

e.g. scale, translation, rotation

Photometric transformations

Figure from T. Tuytelaars ECCV 2006 tutorial
Raw patches as local descriptors

The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector. But this is very sensitive to even small shifts, rotations.

SIFT descriptor [Lowe 2004]

Use histograms to bin pixels within sub-patches according to their orientation.

Why subpatches? Why does SIFT have some illumination invariance?

Making descriptor rotation invariant

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.
SIFT descriptor [Lowe 2004]

- Robust matching technique
- Can handle changes in viewpoint
 - Up to about 60 degree out of plane rotation
- Can handle significant changes in illumination
 - Sometimes even day vs. night (below)
- Fast and efficient—can run in real time
- Lots of code available

Example

NASA Mars Rover images

Example

NASA Mars Rover images with SIFT feature matches

Figure by Noah Snavely
SIFT descriptor properties

Invariant to
• Scale
• Rotation

Partially invariant to
• Illumination changes
• Camera viewpoint
• Occlusion, clutter

Local features: main components

1) Detection: Identify the interest points

2) Description: Extract vector feature descriptor surrounding each interest point.

3) Matching: Determine correspondence between descriptors in two views

Matching local features
Matching local features

To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest SSD).

Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance).

Ambiguous matches

To add robustness to matching, can consider **ratio**: distance to best match / distance to second best match

If low, first match looks good.

If high, could be ambiguous match.

Matching SIFT Descriptors

Nearest neighbor (Euclidean distance)

Threshold ratio of nearest to 2\(^{nd}\) nearest descriptor

![Graph showing PDF for correct and incorrect matches]
Recap: robust feature-based alignment

• Extract features

• Compute putative matches
Recap: robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnik
Applications of local invariant features

- Wide baseline stereo
- Motion tracking
- Panoramas
- 3D reconstruction
- Recognition (better for instance matching)
- ...

Automatic mosaicing

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]
Recognition of specific objects, scenes

Summary

Interest point detection
- Harris corner detector
- Laplacian of Gaussian, automatic scale selection

Invariant descriptors
- Rotation according to dominant gradient direction
- Histograms for robustness to small shifts and translations (SIFT descriptor)

Questions?