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Window‐based models for
generic object detection

May 21st, 2019

Yong Jae Lee

UC Davis

Previously

• Intro to generic object recognition

• Supervised classification
– Main idea

– Skin color detection example
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Last time: 
Example: skin color classification

• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

Feature x = Hue 

P(x|skin)

P(x|not skin)

Kristen Grauman
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• We can represent a class-conditional density using a 
histogram (a “non-parametric” distribution)

Feature x = Hue 

P(x|skin)

Feature x = Hue 

P(x|not skin)
Now we get a new image, 
and want to label each pixel 
as skin or non-skin. 

)()|(  )|( skinPskinxPxskinP 

Last time: 
Example: skin color classification

Kristen Grauman
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Now for every pixel in a new image, we can 
estimate probability that it is generated by skin.

Classify pixels based on these probabilities

Brighter pixels 
higher probability 
of being skin

Last time: 
Example: skin color classification

Kristen Grauman
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Today

• Window-based generic object detection
– basic pipeline

– boosting classifiers

– face detection as case study
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Generic category recognition:
basic framework

• Build/train object model

– Choose a representation

– Learn or fit parameters of model / classifier 

• Generate candidates in new image

• Score the candidates
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Window-based models
Building an object model

Car/non-car 
Classifier

Yes, car.No, not a car.

Given the representation, train a binary classifier

Kristen Grauman
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Window-based models
Generating and scoring candidates

Car/non-car 
Classifier

Kristen Grauman
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Window-based object detection: recap

Car/non-car 
Classifier

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier

Kristen Grauman
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Window-based object detection: recap

Car/non-car 
Classifier

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Kristen Grauman
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Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 
2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…
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Boosting intuition

Weak 
Classifier 1

Slide credit: Paul Viola
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Boosting illustration

Weights
Increased
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Boosting illustration

Weak 
Classifier 2

15
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Boosting illustration

Weights
Increased
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Boosting illustration

Weak 
Classifier 3
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Boosting illustration

Final classifier is 
a combination of weak 
classifiers

18
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Boosting: training

• Initially, weight each training example equally

• In each boosting round:
– Find the weak learner that achieves the lowest weighted training error

– Raise weights of training examples misclassified by current weak learner

• Compute final classifier as linear combination of all weak 

learners (weight of each learner is directly proportional to 

its accuracy)

• Exact formulas for re-weighting and combining weak 

learners depend on the particular boosting scheme (e.g., 

AdaBoost)

Slide credit: Lana Lazebnik
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Viola-Jones face detector
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Main idea:

– Represent local texture with efficiently computable 
“rectangular” features within window of interest

– Select discriminative features to be weak classifiers

– Use boosted combination of them as final classifier

– Form a cascade of such classifiers, rejecting clear 
negatives quickly

Viola-Jones face detector

Kristen Grauman
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Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time.

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman
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Computing the integral image

Lana Lazebnik

Computing the integral image

• Cumulative row sum: s(x, y) = s(x–1, y) + i(x, y) 

• Integral image: ii(x, y) = ii(x, y−1) + s(x, y)

ii(x, y-1)

s(x-1, y)

i(x, y)

Lana Lazebnik
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Computing sum within a rectangle

• Let A,B,C,D be the 
values of the integral 
image at the corners of a 
rectangle

• Then the sum of original 
image values within the 
rectangle can be 
computed as:

sum = A – B – C + D

• Only 3 additions are 
required for any size of 
rectangle!

D B

C A

Lana Lazebnik
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Viola-Jones detector: features

Feature output is difference between 
adjacent regions

Efficiently computable 
with integral image: any 
sum can be computed in 
constant time

“Rectangular” filters

Value at (x,y) is 
sum of pixels 
above and to the 
left of (x,y)

Integral image

Kristen Grauman
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Considering all 
possible filter 
parameters: position, 
scale, and type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?

Use AdaBoost both to select the informative 
features and to form the classifier

Viola-Jones detector: features

Kristen Grauman
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Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-
faces) training examples, in terms of weighted error.

Outputs of a possible 
rectangle feature on 
faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman
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AdaBoost Algorithm
Start with 
uniform weights 
on training 
examples

Evaluate 
weighted error 
for each feature, 
pick best.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

Final classifier is combination of the 
weak ones, weighted according to 
error they had.

Freund & Schapire 1995

{x1,…xn}
For T rounds
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First two features 
selected

Viola-Jones Face Detector: Results
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• Even if the filters are fast to compute, each new 
image has a lot of possible windows to search.

• How to make the detection more efficient?

31

Cascading classifiers for detection

• Form a cascade with low false negative (high recall) rates 
early on

• Apply less accurate but faster classifiers first to immediately 
discard windows that clearly appear to be negative 32

Viola-Jones detector: summary

Train with 5K positives, 350M negatives
Real‐time detector using 38 layer cascade
6061 features in all layers

[Implementation available in OpenCV: 
http://www.intel.com/technology/computing/opencv/]

Faces

Non-faces

Train cascade of 
classifiers with 

AdaBoost

Selected features, 
thresholds, and weights

New image

Kristen Grauman
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Viola-Jones detector: summary

• A seminal approach to real-time object detection 

• Training is slow, but detection is very fast

• Key ideas

 Integral images for fast feature evaluation

 Boosting for feature selection

 Attentional cascade of classifiers for fast rejection of non-
face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Viola-Jones Face Detector: Results
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Detecting profile faces?

Can we use the same detector?
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Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results
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Everingham, M., Sivic, J. and Zisserman, A.
"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006. http://www.robots.ox.ac.uk/~vgg/research/nface/index.html

Example using Viola‐Jones detector

Frontal faces detected and then tracked, character 
names inferred with alignment of script and subtitles.

40

41

Slide: Kristen Grauman
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Consumer application: iPhoto 2009

http://www.apple.com/ilife/iphoto/

Slide credit: Lana Lazebnik

43

Consumer application: iPhoto 2009

Things iPhoto thinks are faces

Slide credit: Lana Lazebnik
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Consumer application: iPhoto 2009

Can be trained to recognize pets!

http://www.maclife.com/article/news/iphotos_faces_recognizes_cats

Slide credit: Lana Lazebnik
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Privacy Gift Shop – CV Dazzle

http://www.wired.com/2015/06/facebook-can-recognize-even-dont-show-face/ 

Wired, June 15, 2015
Slide: Kristen Grauman

Privacy Visor

http://www.3ders.org/articles/20150812-japan-3d-printed-privacy-visors-
will-block-facial-recognition-software.html

Slide: Kristen Grauman

Boosting: pros and cons

• Advantages of boosting
• Integrates classification with feature selection

• Flexibility in the choice of weak learners, boosting scheme

• Testing is fast

• Easy to implement

• Disadvantages
• Needs many training examples

• Often found not to work as well as an alternative 
discriminative classifier, support vector machine (SVM)

– especially for many-class problems

Slide credit: Lana Lazebnik
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What other categories are amenable to window-
based representation?
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Pedestrian detection
• Detecting upright, walking humans also possible using sliding 

window’s appearance/texture; e.g.,

SVM with Haar wavelets 
[Papageorgiou & Poggio, IJCV 
2000]

Space-time rectangle 
features [Viola, Jones & 
Snow, ICCV 2003]

SVM with HoGs [Dalal & 
Triggs, CVPR 2005]

Kristen Grauman
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Window-based detection: strengths

• Sliding window detection and global appearance 
descriptors:
 Simple detection protocol to implement
 Good feature choices critical
 Past successes for certain classes

Kristen Grauman
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Window-based detection: Limitations

• High computational complexity 
 For example: 250,000 locations x 30 orientations x 4 scales = 

30,000,000 evaluations!
 If training binary detectors independently, means cost increases 

linearly with number of classes

• With so many windows, false positive rate better be low

Kristen Grauman
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Limitations (continued)

• Not all objects are “box” shaped

Kristen Grauman
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Limitations (continued)

• If considering windows in isolation, context is lost

Figure credit: Derek Hoiem

Sliding window Detector’s view

54



5/21/2019

19

Pe
rc

ep
tu

al
 a

n
d
 S

en
so

ry
 A

u
gm

en
te

d
 C

om
p
u
ti

n
g

V
is

u
a

l O
b

je
c

t 
R

e
c

o
g

n
it

io
n

 T
u

to
ri

a
l

V
is

u
a

l O
b

je
c

t 
R

e
c

o
g

n
it

io
n

 T
u

to
ri

a
l

Limitations (continued)

• In practice, often entails large, cropped training set 
(expensive) 

• Requiring good match to a global appearance description 
can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni Kristen Grauman
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Summary

• Basic pipeline for window-based detection

– Model/representation/classifier choice

– Sliding window and classifier scoring

• Boosting classifiers: general idea

• Viola-Jones face detector

– Exemplar of basic paradigm

– Plus key ideas: rectangular features, Adaboost for feature 
selection, cascade

• Pros and cons of window-based detection

56

Questions?

See you Thursday!
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