

Previously

- Intro to generic object recognition
- Supervised classification
 - Main idea
 - Skin color detection example

Today

5 Kristen Grauma

- Window-based generic object detection
 - basic pipeline
 - boosting classifiers
 - face detection as case study

Generic category recognition: basic framework

- Build/train object model
 - Choose a representation
 - Learn or fit parameters of model / classifier
- Generate candidates in new image
- · Score the candidates

Boosting: training

- Initially, weight each training example equally
- In each boosting round:
 - Find the weak learner that achieves the lowest weighted training error
 - Raise weights of training examples misclassified by current weak learner
- Compute final classifier as linear combination of all weak learners (weight of each learner is directly proportional to its accuracy)
- Exact formulas for re-weighting and combining weak learners depend on the particular boosting scheme (e.g., AdaBoost)

Slide credit: Lana Lazebn

Viola-Jones face detector

ACCEPTED CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION 2001

Rapid Object Detection using a Boosted Cascade of Simple Features

Paul Viola viola@merl.com Mitsubishi Electric Research Labs 201 Broadway, 8th FL Cambridge, MA 02139

Michael Jones mjones@crl.dec.com Compaq CRL One Cambridge Center Cambridge, MA 02142

Abstract This paper describes a machine learning approach for vitected at 15 frames per second on a conventional 700 MHz Intel Pentium III. In other face detection systems, auxiliary information, such as image differences in video sequences.

20

Viola-Jones face detector

Main idea:

- Represent local texture with efficiently computable "rectangular" features within window of interest
- Select discriminative features to be weak classifiers
- Use boosted combination of them as final classifier
- Form a cascade of such classifiers, rejecting clear negatives quickly

8

Computing sum within a rectangle

- Let A,B,C,D be the values of the integral image at the corners of a rectangle
- Then the sum of original image values within the rectangle can be computed as: sum = A - B - C + D

25 Lana Laz

Kristen Graum

Integral image

• How to make the detection more efficient?

 Apply less accurate but faster classifiers first to immediately discard windows that clearly appear to be negative

Viola-Jones detector: summary

- A seminal approach to real-time object detection
- Training is slow, but detection is very fast
- Key ideas
 - > Integral images for fast feature evaluation
 - Boosting for feature selection
 - Attentional cascade of classifiers for fast rejection of nonface windows

P. Viola and M. Jones. <u>Rapid object detection using a boosted cascade of simple features.</u> CVPR 2001.
P. Viola and M. Jones. <u>Robust real-time face detection</u>, IJCV 57(2), 2004.

Detecting profile faces?

Can we use the same detector?

isual Object Recognition Tutorial

38

Slide: Kristen Grauman

Boosting: pros and cons

Advantages of boosting

- · Integrates classification with feature selection
- Flexibility in the choice of weak learners, boosting scheme
- Testing is fast
- Easy to implement

• Disadvantages

- Needs many training examples
- Often found not to work as well as an alternative discriminative classifier, support vector machine (SVM)

 especially for many-class problems

48

Slide credit: Lana Laze

What other categories are amenable to *window-based representation*?

Pedestrian detection

Detecting upright, walking humans also possible using sliding window's appearance/texture; e.g.,

SVM with Haar wavelets [Papageorgiou & Poggio, IJCV 2000]

Space-time rectangle features [Viola, Jones & Snow, ICCV 2003] Snow, ICCV 2003]

49

50 Kristen Grauman

51 Kristen Grauman

Window-based detection: strengths

- Sliding window detection and global appearance descriptors:
 - > Simple detection protocol to implement
 - Good feature choices critical
 - Past successes for certain classes

Object Recognition Tutorial

Window-based detection: Limitations

- High computational complexity
 - For example: 250,000 locations x 30 orientations x 4 scales = 30,000,000 evaluations!
 - If training binary detectors independently, means cost increases linearly with number of classes
- · With so many windows, false positive rate better be low

Limitations (continued)

Not all objects are "box" shaped

52 Kristen Grauman

Kristen Grauman

isual Object Recognition Tuto

Limitations (continued)

· If considering windows in isolation, context is lost

Sliding window

Limitations (continued)

- In practice, often entails large, cropped training set (expensive)
- Requiring good match to a global appearance description can lead to sensitivity to partial occlusions

Image credit: Adam, Rivlin, & Shimshoni

Kristen Grauman

56

Summary

- · Basic pipeline for window-based detection
 - Model/representation/classifier choice
 - Sliding window and classifier scoring
- Boosting classifiers: general idea
- Viola-Jones face detector
 - Exemplar of basic paradigm
 - Plus key ideas: rectangular features, Adaboost for feature selection, cascade
- · Pros and cons of window-based detection

Questions?

See you Thursday!