
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Neural network definition

- Activations: $a_{3}=\sum_{j=0}^{D} w_{j i f}^{(1)} x_{i}$
- Nonlinear activation function h (e.g. sigmoid, ReLU): $z_{j}=h\left(a_{j}\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Multilayer networks

- Cascade neurons together
- Output from one layer is the input to the next
- Each layer has its own sets of weights

Feed-forward networks

- Predictions are fed forward through the network to classify

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Deep neural networks \qquad

- Lots of hidden layers
- Depth = power (usually) \qquad

How do we train them?

- The goal is to iteratively find a set of weights that allow the activations/outputs to match the desired output
- For this, we will minimize a loss function
- The loss function quantifies the agreement between the predicted scores and GT labels
- First, let's simplify and assume we have a single layer of weights in the network
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear classifier: Hinge loss				
Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are				Hinge loss:
cat	3.2	1.3	2.2	
car	5.1		2.5	$=\max (0,5.1-3.2+1)$
frog	-1.7		-3.1	$=+\max (0,-1.7 .3 .2+1)$
Loss:	2.9			$=2.9+0$ $=2.9$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear classifier: Hinge loss				
Suppose: 3 training examples, 3 classes. With some W the scores $f(x, W)=W x$ are				Hinge loss:
cat	3.2	1.3	2.2	之少
car	5.1	4.9	2.5	
frog	-1.7	2.0	-3.1	$L=\frac{1}{N} \sum_{i=1}^{N} L_{i}$
Loss:	2.9	0	12.9	- $=(2.9+0+12.9) / 3$ $=15.8 / 3=5.3$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear classifier: Hinge loss
$f(x, W)=W x$
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Linear classifier: Hinge loss	
Weight Regularization	$\lambda=$ regularization strength (hyperparameter)
$L=\frac{1}{N} \sum_{i=1}^{N} \sum_{j \neq y_{i}} \max \left(0, f\left(x_{i} ; W\right)_{j}-f\left(x_{i} ; W\right)_{y_{i}}+1\right)+\lambda R(W)$	
In common use:	$R(W)=\sum_{k} \sum_{l} W_{k, l}^{2}$
L2 regularization	$R(W)=\sum_{k} \sum_{l} \mid W_{k, l}$
L1 regularization	
Dropout (will see later)	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

current w:	
$[0.34$,	gradient dW:
-1.11,	$[?$,
0.78,	$?$,
0.12,	$?$,
0.55,	$?$,
2.81,	$?$,
-3.1,	$?$,
-1.5,	$?, \ldots]$
$0.33, \ldots]$	
loss 1.25347	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

current W:	$\mathbf{W}+\mathbf{h}$ (first dim):	
$[0.34$,	$[0.34+\mathbf{0 . 0 0 0 1}$,	gradient dW:
-1.11,	-1.11,	$[?$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?, \ldots]$
$0.33, \ldots]$	$0.33, \ldots]$	
loss 1.25347	loss 1.25322	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

current W:	$\mathbf{W}+\mathbf{h}$ (second dim):	
$[0.34$,	$[0.34$,	gradient dW:
-1.11,	$-1.11+\mathbf{0 . 0 0 0 1}$,	$[-2.5$,
0.78,	0.78,	$?$,
0.12,	0.12,	$?$,
0.55,	0.55,	$?$,
2.81,	2.81,	$?$,
-3.1,	-3.1,	$?$,
-1.5,	-1.5,	$?$,
$0.33, \ldots]$	$0.33, \ldots]$	$?, \ldots]$
loss 1.25347	loss 1.25353	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

current W:	$\mathbf{W}+\mathbf{h}$ (third dim):	gradient dW:
[0.34,	[0.34,	[-2.5,
-1.11,	-1.11,	0.6,
0.78,	0.78 + 0.0001,	
0.12,	0.12,	
$0.55,$	0.55,	
2.81,	2.81,	
-3.1	-3.1,	?
-1.5	-1.5,	
$\begin{aligned} & 0.33, \ldots] \\ & \text { loss } 1.25347 \end{aligned}$	$\begin{aligned} & 0.33, \ldots] \\ & \text { loss } 1.25347 \end{aligned}$?,...]

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

This is silly. The loss is just a function of W:
$L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2}$
$L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right)$
$s=f(x ; W)=W x$
want $\nabla_{W} L$
Use Calculus!
$\nabla_{W} L=\ldots$

current W:		gradient dW:
$[0.34$,		$[-2.5$,
-1.11,	$\mathrm{dW}=\ldots$	0.6,
0.78,	(some function	0,
0.12,	data and W)	0.2,
0.55,	0.7,	
2.81,		-0.5,
-3.1,	1.1,	
-1.5,	$-2.1, \ldots]$	
$0.33, \ldots]$.		
loss 1.25347		

Loss gradients

- Denoted as (diff notations): $\frac{\partial E}{\partial w_{j i}^{(1)}} \quad \nabla_{W} L$
- i.e. how the loss changes as a function of the weights
- We want to change the weights in such a way that makes the loss decrease as fast as possible

Gradient descent

- We'll update weights iteratively
- Move in direction opposite to gradient: \qquad
$\underset{\substack{\mathbf{w}^{(\tau+1)} \\ \text { Time }} \underset{\text { Learning rate }}{\mathbf{w}^{(\tau)}}=\eta \nabla E\left(\mathbf{w}^{(\tau)}\right)}{\mathbf{w}^{(\tau)}}$

Figure from Andrej Karpathy

Gradient descent

- Iteratively subtract the gradient with respect to the model parameters (w)
- i.e. we're moving in a direction opposite to the gradient of the loss
- i.e. we're moving towards smaller loss
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mini-batch gradient descent

- In classic gradient descent, we compute the gradient from the loss for all training examples (can be slow)
- So, use only use some of the data for each gradient update
- We cycle through all the training examples multiple times
- Each time we've cycled through all of them once is called an 'epoch'
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Gradient descent in multi-layer nets

- We'll update weights
- Move in direction opposite to gradient:

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E\left(\mathbf{w}^{(\tau)}\right)
$$

- How to update the weights at all layers?
- Answer: backpropagation of loss from higher layers to lower layers

Backpropagation: Graphic example

First calculate error of output units and use this to change the top layer of weights.

Update weights into j

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\begin{array}{|ll|}
\hline q=x+y & \frac{\partial q}{\partial x}=1, \frac{\partial_{q}}{\partial y}=1 \\
\hline \hline f=q z & \frac{\partial f}{\partial \partial_{q}}=z, \frac{\partial f}{\partial z}=q \\
\hline
\end{array}
$$

2
Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

