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Deep neural networks II

May 30th, 2019

Yong Jae Lee

UC Davis

Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Andrej Karpathy

Why (convolutional) neural networks? 

State of the art performance on many problems

Most (all?) papers in recent vision conferences 
use deep neural networks

Razavian et al., CVPR 2014 Workshops

Neural network definition

Figure from Christopher Bishop 

• Nonlinear classifier

• Can approximate any continuous function to arbitrary 
accuracy given sufficiently many hidden units
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Neural network definition

• Activations: 

• Nonlinear activation function h (e.g. sigmoid, 
ReLU):

Figure from Christopher Bishop 

• Layer 2

• Layer 3 (final)

• Outputs (e.g. sigmoid/softmax)

• Putting everything together:

Neural network definition

(binary) (multiclass)

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout  

ELU

Nonlinear activation functions

Andrej Karpathy
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Multilayer networks

• Cascade neurons together

• Output from one layer is the input to the next

• Each layer has its own sets of weights

HKUST

Feed-forward networks

• Predictions are fed forward through the 
network to classify

HKUST

Feed-forward networks

9

• Predictions are fed forward through the 
network to classify

HKUST
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Feed-forward networks

10

• Predictions are fed forward through the 
network to classify

HKUST

Feed-forward networks

11

• Predictions are fed forward through the 
network to classify

HKUST

Feed-forward networks

12

• Predictions are fed forward through the 
network to classify

HKUST
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Feed-forward networks

13

• Predictions are fed forward through the 
network to classify

HKUST

Deep neural networks

• Lots of hidden layers

• Depth = power (usually)

Figure from http://neuralnetworksanddeeplearning.com/chap5.html 
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How do we train them? 

• The goal is to iteratively find a set of weights 
that allow the activations/outputs to match 
the desired output

• For this, we will minimize a loss function

• The loss function quantifies the agreement 
between the predicted scores and GT labels

• First, let’s simplify and assume we have a 
single layer of weights in the network 
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Classification goal

Example dataset: CIFAR-10  
10 labels
50,000 training images  

each image is 32x32x3
10,000 test images.

Andrej Karpathy

Classification scores

[32x32x3]
array of numbers 0...1  
(3072 numbers total)

f(x,W)
image parameters

10 numbers,  
indicating class  
scores

Andrej Karpathy

+ b

Linear classifier 

[32x32x3]
array of numbers 0...1

10 numbers,  
indicating class  
scores

3072x1

10x1 10x3072

parameters, or “weights”

+b 10x1

Andrej Karpathy
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Linear classifier 

Example with an image with 4 pixels, and 3 classes (cat/dog/ship)

Andrej Karpathy

Linear classifier 

-3.45
-8.87

0.09
2.9

4.48
8.02

3.78
1.06

-0.36
-0.72

-0.51

6.04
5.31

-4.22
-4.19

3.58
4.49

-4.37
-2.09

-2.93

3.42

4.64
2.65

5.1
2.64

5.55
-4.34

-1.5
-4.79

6.14

1. Define a loss function  
that quantifies our  
unhappiness with the  
scores across the training  
data.

2. Come up with a way of  
efficiently finding the  
parameters that minimize  
the loss function.  
(optimization)

TODO:

Andrej Karpathy

Linear classifier 

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

Adapted from Andrej Karpathy

Want: syi
>= sj + 1

i.e. sj – syi
+ 1 <= 0

If true, loss is 0
If false, loss is magnitude of violation

Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 5.1 - 3.2 + 1)
+max(0, -1.7 - 3.2 + 1)

= max(0, 2.9) + max(0, -3.9)
= 2.9 + 0
= 2.9

cat

car  

frog

3.2

5.1

-1.7

1.3 2.2

4.9 2.5

2.0 -3.1

Loss: 2.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 1.3 - 4.9 + 1)
+max(0, 2.0 - 4.9 + 1)

= max(0, -2.6) + max(0, -1.9)
= 0 + 0
= 0

cat 3.2

car 5.1

frog -1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Loss: 2.9 0

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

= max(0, 2.2 - (-3.1) + 1)
+max(0, 2.5 - (-3.1) + 1)

= max(0, 5.3 + 1) 
+ max(0, 5.6 + 1)

= 6.3 + 6.6
= 12.9

cat

car  

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Loss: 2.9 0 12.9

Adapted from Andrej Karpathy

Linear classifier: Hinge loss 

cat

car

frog

3.2

5.1

-1.7

1.3

4.9

2.0

2.2

2.5

-3.1

Suppose: 3 training examples, 3 classes.  
With some W the scores are:

Hinge loss:

Given an example
where  
where

is the image and
is the (integer) label,

and using the shorthand for the  
scores vector:

the loss has the form:

and the full training loss is the mean  
over all examples in the training data:

L = (2.9 + 0 + 12.9)/3
2.9 0 12.9Loss: = 15.8 / 3 = 5.3

Lecture 3 - 12

Adapted from Andrej Karpathy

Linear classifier: Hinge loss 

Adapted from Andrej Karpathy
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Linear classifier: Hinge loss 

Weight Regularization
λ = regularization strength  
(hyperparameter)

In common use:  
L2 regularization  
L1 regularization
Dropout (will see later)

Adapted from Andrej Karpathy

Want to maximize the log likelihood, or (for a loss function)  
to minimize the negative log likelihood of the correct class:cat

car

frog

3.2

5.1

-1.7

scores = unnormalized log probabilities of the classes.

where

Another loss: Softmax (cross-entropy)

Andrej Karpathy

cat

car

frog

unnormalized log probabilities

24.5

164.0

0.18

3.2

5.1

-1.7

exp normalize

unnormalized probabilities

0.13

0.87

0.00

probabilities

L_i = -log(0.13)
= 0.89

Another loss: Softmax (cross-entropy)

Adapted from Andrej Karpathy
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How to minimize the loss function? 

Andrej Karpathy

How to minimize the loss function? 

In 1-dimension, the derivative of a function:

In multiple dimensions, the gradient is the vector of (partial derivatives).

Andrej Karpathy

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy
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current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

gradient dW:

[?,
?,
?,
?,
?,
?,
?,
?,
?,…]

Andrej Karpathy

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

(1.25322 - 1.25347)/0.0001
= -2.5

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (first dim):

[0.34 + 0.0001,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25322

Andrej Karpathy

gradient dW:

[-2.5,
?,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

Andrej Karpathy
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gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (second dim):

[0.34,
-1.11 + 0.0001,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25353

(1.25353 - 1.25347)/0.0001
= 0.6

Andrej Karpathy

gradient dW:

[-2.5,
0.6,
?,
?,
?,
?,
?,
?,
?,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

W + h (third dim):

[0.34,
-1.11,
0.78 + 0.0001,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

Andrej Karpathy

This is silly. The loss is just a function of W:

want

Andrej Karpathy
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This is silly. The loss is just a function of W:

want

Use Calculus!

= ...

Andrej Karpathy

gradient dW:

[-2.5,
0.6,
0,
0.2,
0.7,
-0.5,
1.1,
1.3,
-2.1,…]

current W:

[0.34,
-1.11,
0.78,
0.12,
0.55,
2.81,
-3.1,
-1.5,
0.33,…]
loss 1.25347

dW = ...
(some function  
data and W)

Andrej Karpathy

Loss gradients

• Denoted as (diff notations):

• i.e. how the loss changes as a function of the 
weights

• We want to change the weights in such a 
way that makes the loss decrease as fast as 
possible  
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Gradient descent

• We’ll update weights iteratively

• Move in direction opposite to gradient:

L
Learning rate

Time

Figure from Andrej Karpathy

original W

negative gradient direction
W_1

W_2

loss function landscape

Gradient descent

• Iteratively subtract the gradient with respect 
to the model parameters (w)

• i.e. we’re moving in a direction opposite to 
the gradient of  the loss

• i.e. we’re moving towards smaller loss

Mini-batch gradient descent

• In classic gradient descent, we compute the 
gradient from the loss for all training 
examples (can be slow)

• So, use only use some of the data for each 
gradient update

• We cycle through all the training examples 
multiple times 

• Each time we’ve cycled through all of them 
once is called an ‘epoch’
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Andrej Karpathy

Learning rate selection

The effects of step size (or “learning rate”)

Gradient descent in multi-layer nets

• We’ll update weights

• Move in direction opposite to gradient:

• How to update the weights at all layers?

• Answer: backpropagation of loss from higher 
layers to lower layers

Backpropagation: Graphic example

First calculate error of output units and use this 
to change the top layer of weights.

output

hidden

input

Update weights into j

Adapted from Ray Mooney

k

j

i

w(2)

w(1)
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Backpropagation: Graphic example

Next calculate error for hidden units based on 
errors on the output units it feeds into.

output

hidden

input

k

j

i

Adapted from Ray Mooney

Backpropagation: Graphic example

Finally update bottom layer of weights based on 
errors calculated for hidden units.

output

hidden

input

Update weights into i

k

j

i

Adapted from Ray Mooney

Backpropagation

• Easier if we use computational graphs, 
especially when we have complicated 
functions typical in deep neural networks

Figure from Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Lecture 4 - 10

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 11

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 12

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 13

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 14

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 15

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 16

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 17

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 18

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Upstream gradient Local gradient

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Want:

Lecture 4 - 20

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

e.g. x = -2, y = 5, z = -4

Chain rule:

Want:

Lecture 4 - 21

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Backpropagation: a simple example
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

f

activations

Lecture 4 - 22

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

Lecture 4 - 23

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

“local gradient”

f

gradients

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 24

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy
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Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 25

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 26

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy

Fei-Fei Li & Andrej Karpathy & Justin Johnson Lecture 4 - 13 Jan 2016

activations

“local gradient”

f

gradients

Lecture 4 - 27

13 Jan 2016Fei-Fei Li & Andrej Karpathy & Justin Johnson
Andrej Karpathy
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Backpropagation: another example

Andrej Karpathy


