
6/4/2019

1

Deep neural networks III

June 4th, 2019

Yong Jae Lee

UC Davis

Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Andrej Karpathy

Announcements

• PS3 due 6/4 (tonight), 11:59 pm

• Review session during Thurs lecture
– Post questions on piazza

• Final exam 6/7 (Friday), 1-3 pm

2

Convolutional Neural Networks (CNN)
• Neural network with specialized

connectivity structure

• Stack multiple stages of feature
extractors

• Higher stages compute more global,
more invariant, more abstract features

• Classification layer at the end

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86(11): 2278–2324, 1998.

Adapted from Rob Fergus

6/4/2019

2

• Feed-forward feature extraction:
1. Convolve input with learned filters

2. Apply non-linearity

3. Spatial pooling (downsample)

• Supervised training of convolutional
filters by back-propagating
classification error

Adapted from Lana Lazebnik

Convolutional Neural Networks (CNN)

Input Image

Convolution
(Learned)

Non-linearity

Spatial pooling

Output (class probs)

…

32

3

32x32x3 image

width

height

32

depth

Convolutions: More detail

Andrej Karpathy

32

32

3

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Convolutions: More detail

Andrej Karpathy

6/4/2019

3

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer
activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

Convolutions: More detail

Andrej Karpathy

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

activation maps

1

28

28

convolve (slide) over all
spatial locations

consider a second, green filter

Convolutions: More detail

Andrej Karpathy

6/4/2019

4

32

3 6

28

activation maps

32

28

Convolution Layer

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

Convolutions: More detail

Andrej Karpathy

example 5x5 filters
(32 total)

We call the layer convolutional
because it is related to convolution
of two signals:

Element-wise multiplication and sum
of a filter and the signal (image)

one filter =>
one activation map

Convolutions: More detail

Adapted from Andrej Karpathy, Kristen Grauman

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

Convolutions: More detail

Andrej Karpathy

6/4/2019

5

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

Convolutions: More detail

Andrej Karpathy

A closer look at spatial dimensions:

32

32

3

activation map

32x32x3 image
5x5x3 filter

1

28

28

convolve (slide) over all
spatial locations

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

6/4/2019

6

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

6/4/2019

7

=> 5x5 output

7

7x7 input (spatially)
assume 3x3 filter

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

6/4/2019

8

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

Convolutions: More detail

Andrej Karpathy

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

Convolutions: More detail

Andrej Karpathy

6/4/2019

9

N

F

F

N

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

Convolutions: More detail

Andrej Karpathy

preview:

Convolutions: More detail

Andrej Karpathy

Figure from http://www.mdpi.com/2072‐4292/7/11/14680/htm

A Common Architecture: AlexNet

6/4/2019

10

Case Study: VGGNet

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

best model

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error

[Simonyan and Zisserman, 2014]

Andrej Karpathy

[Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

Case Study: GoogLeNet

Andrej Karpathy

Slide from Kaiming He’s recent presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

Case Study: ResNet

Andrej Karpathy

6/4/2019

11

(slide from Kaiming He’s recent presentation)

Case Study: ResNet

Andrej Karpathy

[He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s recent presentation)

2-3 weeks of training
on 8 GPU machine

Case Study: ResNet

Andrej Karpathy

Practical matters

6/4/2019

12

Comments on training algorithm
• Not guaranteed to converge to zero training error, may

converge to local optima or oscillate indefinitely.

• However, in practice, does converge to low error for
many large networks on real data.

• Thousands of epochs (epoch = network sees all training
data once) may be required, hours or days to train.

• To avoid local-minima problems, run several trials
starting with different random weights (random restarts),
and take results of trial with lowest training set error.

• May be hard to set learning rate and to select number of
hidden units and layers.

• Neural networks had fallen out of fashion in 90s, early
2000s; back with a new name and significantly improved
performance (deep networks trained with dropout and
lots of data).

Ray Mooney, Carlos Guestrin, Dhruv Batra

Over-training prevention
• Running too many epochs can result in over-fitting.

• Keep a hold-out validation set and test accuracy on it
after every epoch. Stop training when additional
epochs actually increase validation error.

0 # training epochs

er
ro

r

on training data

on test data

Adapted from Ray Mooney

Training: Best practices

• Use mini-batch

• Use regularization

• Use cross-validation for your parameters

• Use RELU or leaky RELU, don’t use sigmoid

• Center (subtract mean from) your data

• Learning rate: too high? too low?

• Use Batch Normalization

6/4/2019

13

Regularization: Dropout

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

• Randomly turn off some neurons
• Allows individual neurons to independently be
responsible for performance

Adapted from Jia-bin Huang

Data Augmentation (Jittering)

Create virtual training samples
• Horizontal flip

• Random crop

• Color casting

• Geometric distortion

Deep Image [Wu et al. 2015]
Jia-bin Huang

(Assume X [NxD] is data matrix,
each example in a row)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 39 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei‐Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Preprocessing the Data

6/4/2019

14

Weight Initialization

Q: what happens when W=constant init is used?

April 19, 2018
Fei‐Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

- Another idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but problems with
deeper networks.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 41 April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei‐Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

Weight Initialization

Make variance of input and output in each layer similar
- Xavier initialization [Glorot et al. 2010]
- He initialization [He et al. 2015]

[Ioffe and Szegedy, 2015]

“you want zero-mean unit-variance activations? just make them so.”

consider a batch of activations at some layer. To make
each dimension zero-mean unit-variance, apply:

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Batch Normalization

Lecture 6 - 42April 19, 2018Fei-Fei Li & Justin Johnson & Serena Yeung

Fei‐Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

6/4/2019

15

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 6 - April 19, 2018

Lecture 6 - 43 April 19, 2018

Batch Normalization

Fei‐Fei Li, Andrej Karpathy, Justin Johnson, Serena Yeung

[Ioffe and Szegedy, 2015]

Transfer Learning

“You need a lot of a data if you want to
train/use CNNs”

Andrej Karpathy

Transfer Learning with CNNs

• The more weights you need to learn, the
more data you need

• That’s why with a deeper network, you need
more data for training than for a shallower
network

• One possible solution:

Set these to the already learned
weights from another network

Learn these on your own task

6/4/2019

16

1. Train on
ImageNet

2. Small dataset:

Freeze these

Train this

3. Medium dataset:
finetuning

more data = retrain more of
the network (or all of it)

Freeze these

Lecture 11 - 29

Train this

Transfer Learning with CNNs

Adapted from Andrej Karpathy

Source: classification on ImageNet Target: some other task/data

Summary

• We use deep neural networks because of
their strong performance in practice

• Convolutional neural networks (CNN)
• Convolution, nonlinearity, max pooling

• Training deep neural nets
• We need an objective function that measures and guides us

towards good performance

• We need a way to minimize the loss function: stochastic
gradient descent

• We need backpropagation to propagate error through all
layers and change their weights

• Practices for preventing overfitting
• Dropout; data augmentation; transfer learning

