ECS 174: Computer Vision April 2nd, 2019

Yong Jae Lee Assistant Professor CS, UC Davis

Plan for today

- Course overview
- Introduction to computer vision research
- Logistics and requirements

Introductions

- Instructor
 - Yong Jae Lee
 - yongjaelee@ucdavis.edu
 - Assistant Professor in CS, UC Davis since July 2014
 - Research areas: Computer vision and machine learning
 - Visual Recognition

Introductions

- TAs:
 - Xueyan Zou
 - <u>zxyzou@ucdavis.edu</u>
 - PhD student in CS
 - Yangming Wen
 - <u>ymnwen@ucdavis.edu</u>
 - MS student in CS

This course

- ECS 174 (4-units)
- Lecture: Tues & Thurs 4:40-6:00 pm, Giedt Hall 1001
- Discussion section: Mon 12:10-1pm, Hunt 100
- Office hours: Academic Surge 1044/2075
 - Yangming: Wed 11 am 1 pm (AS 1044)
 - Xueyan: Thurs 11 am- 1 pm (AS 1044)
 - Yong Jae: Fri 3-5 pm (AS 2075)

This course

• Course webpage

https://sites.google.com/a/ucdavis.edu/ecs-174computer-vision---spring-2019/

- Canvas (assignment submission, grades) <u>https://canvas.ucdavis.edu/courses/349152</u>
- Piazza

piazza.com/uc davis/spring2019/ecs174

Goals of this course

- Introduction to primary topics in Computer Vision
- Basics and fundamentals
- Practical experience through assignments
- Views of computer vision as a research area

Prerequisites

- Upper-division undergrad course
- Basic knowledge of probability and linear algebra
- Data structures, algorithms
- Programming experience
- Experience with image processing or Matlab will help but is not necessary

Topics overview

- Features and filters
- Grouping and fitting
- Recognition and learning

Focus is on algorithms, rather than specific systems

Features and filters

Transforming and describing images; textures, edges

Slide credit: Kristen Grauman

Grouping and fitting

Parallelism

Symmetry

Continuity

Closure

Clustering, segmentation, fitting; what parts belong together? Slide credit: Kristen Grauman

Recognition and learning

Slide credit: Kristen Grauman

Margin

Recognition and learning

Deep learning

Not covered: Multiple views and motion

Hartley and Zisserman

Multi-view geometry, stereo vision

Slide credit: Kristen Grauman

Not covered: Video processing

Tracking objects, video analysis, low level motion, optical flow

+	+	٠	+	٠	+	+	+	+	+	+	+	٠	٠	+
+	+	+	+	+	+	+	٠	+	+	+	٠	+	+	+
+	+	+	+	+	+		۰.	+	+			¥	+	+
+	+	+	+	t		*	*	+	+	+*	*	+	+	+
+	+	+	+	1	*	*	+-	+	+	+-	+	1	+	+
+	٠	+	+		*	+-	+-	+	-+-	+-	-	1	+	+
+	+	+	+	1	*	+-	+-	+	+-	+**	-	1	+	+
+	+	+	+	+	*	+	.+-	+	+-	*	-	1	+	+
+	+	+	+	+	+	+	.+-	+	+-	*	-	+	+	+
+	٠	+	+	+	+	+	+-	+	+-	•	+	+	٠	+
+	+	+	+	+	+	+	+	+	+	+	+	+	٠	+
+	+	+	+	+	+	+	+	+	+	٠	+	+		+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

.

Tomas Izo

Slide credit: Kristen Grauman

Plan for today

- Course overview
- Introduction to computer vision research
- Logistics and requirements

Plan for today

- Course overview
- Introduction to computer vision research
- Logistics and requirements

Textbooks

By Rick Szeliski http://szeliski.org/Book/ By Kristen Grauman, Bastian Leibe Visual Object Recognition

Requirements / Grading

- Problem sets (60%)
- Final exam (37%)
 - comprehensive (cover all topics learned in class)
- Class and Piazza participation (3%)
 - Piazza: participation points for posting (sensible) questions and answers

Problem sets

- Some short answer concept questions
- Matlab programming problems
 - Implementation
 - Explanation, results
- Follow instructions; points will be deducted if we can't run your code out of the box
- Ask questions on Piazza first
- Submit to Canvas
- The assignments will take significant time to do
- Start early
- TA will go over problem set during discussion sections after release (others will be used as extra office hours)

Matlab

- Built-in toolboxes for lowlevel image processing, visualization
- Compact programs
- Intuitive interactive debugging
- Widely used in engineering

Matlab

- CSIF labs 67, 71, 75 (pc1-pc60)
- Academic Surge 1044 and 1116
- Lab schedule (reservations) and remote access info found on class website

Matlab available for free from campus software site

Problem Set 0

- Matlab warmup
- Basic image manipulation
- Out tonight, due 4/12

Preview of some problem sets

resize: castle squished

crop: castle cropped

content aware resizing: seam carving

Preview of some problem sets

Grouping

Preview of some problem sets

Object search and recognition

Problem set deadlines

- Problem sets due 11:59 PM
 - Follow submission instructions given in assignment
 - Submit to Canvas; no hard copy submissions
 - Deadlines are firm. We'll use Canvas timestamp. Even 1 minute late is late.
- Late submissions: 1 point deduction for every hour after the deadline up to 72 hours; after 72 hours, you will receive a 0
- If your program doesn't work, clean up the code, comment it well, explain what you have, and still submit. Draw our attention to this in your answer sheet.

Collaboration policy

- All responses and code must be written individually or in pairs (a group of 2)
- Students submitting answers or code found to be identical or substantially similar (due to inappropriate collaboration) risk failing the course
 - We will be using MOSS to check for cheating!
 - Copying online solutions also counts as cheating!
 - Please don't cheat... you are going to get caught!
- Read and follow UC Davis <u>code of conduct</u>

MOSS

Miscellaneous

- Check class website regularly for assignment files, notes, announcements, etc.
- Come to lecture on time
- No laptops, phones, tablets, etc. in class please
- Please interrupt with questions at any time

Coming up

- Read the class webpage carefully
- Next class (Thurs): Matlab tutorial
- PSO out tonight, due 4/12
- No office hours on Friday