

Last time

- Image formation
- · Linear filters and convolution useful for
 - Image smoothing, removing noise
 - Box filter
 - Gaussian filter
 - Impact of scale / width of smoothing filter
- Separable filters more efficient
- Median filter: a non-linear filter, edge-preserving

2

Review Filter f = 1/9 x [1 1 1 1 1 1 1 1 1] original image g filtered

Review		
Filter f = 1/9 x [1 1 1 1 1 1 1 1]	т	
original image g	filtered	
Slide credit: Kristen Grauman	4	

Review

How do you sharpen an image?

5

Filtering examples: sharpening

before

after

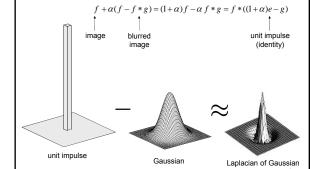
Slide credit: Kristen Grauma

Sharpening revisited

What does blurring take away?

Let's add it back:

Unsharp mask filter



	_	
Review		
Median filter f:		
Is $f(a+b) = f(a)+f(b)$?		
Example:		
a = [10 20 30 40 50] b = [55 20 30 40 50]		
Is f linear?		
Slide credit: Devi Parikh		
Recall: Image filtering]	
Compute a function of the local neighborhood at each pixel in the image	,	
 Function specified by a "filter" or mask saying how to combine values from neighbors 		
Uses of filtering:		
Enhance an image (denoise, resize, increase contrast, etc) Extract information (texture, edges, interest points, etc)		
Detect patterns (template matching)		
11 Slide credit: Kristen Grauman, Adapted from Derek Holem		
	٦	
Recall: Image filtering		
Compute a function of the local neighborhood at		
each pixel in the image - Function specified by a "filter" or mask saying how to		
combine values from neighbors		
Uses of filtering:		
Enhance an image (denoise, resize, increase contrast, etc) Extract information (texture, edges, interest points, etc)		
Detect patterns (template matching)		

Edge detection

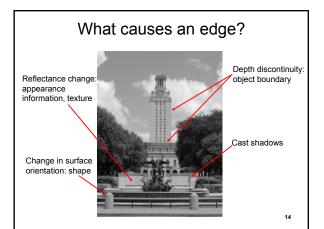
- Goal: map image from 2d array of pixels to a set of curves or line segments or contours.
- · Why?

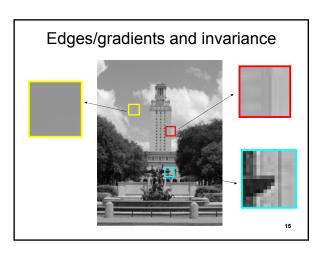
13

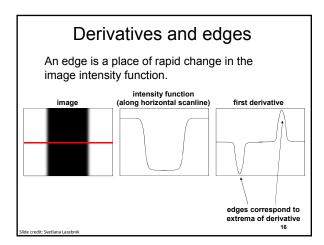
Figure from J. Shotton et al., PAMI 2007

• Main idea: look for strong gradients, post-process

lide credit: Kristen Graumai







Derivatives with convolution

For 2D function, f(x,y), the partial derivative is:

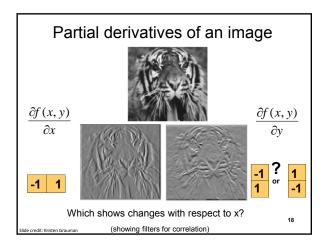
$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

For discrete data, we can approximate using finite differences:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

To implement above as convolution, what would be the associated filter?

Slide credit: Kristen Grauma



Assorted finite difference filters

- >> My = fspecial('sobel');
 >> outim = imfilter(double(im), My);
- >> imagesc(outim);
- >> colormap gray;

Image gradient

The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$$

The gradient points in the direction of most rapid change in intensity

The **gradient direction** (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

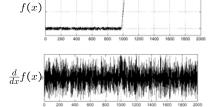
The **edge strength** is given by the gradient magnitude

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

21

Effects of noise

Consider a single row or column of the image Plotting intensity as a function of position gives a signal

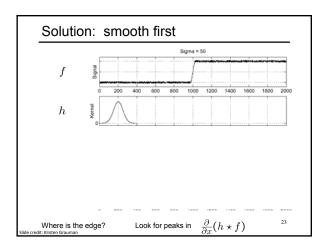


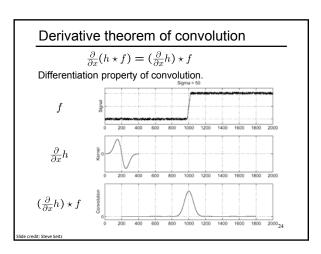
Where is the edge?

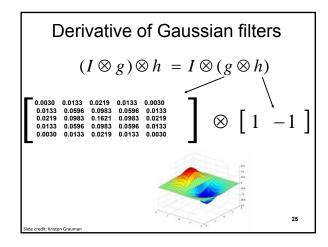
Effects of noise

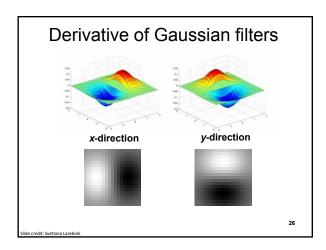
- Difference filters respond strongly to noise
 - Image noise results in pixels that look very different from their neighbors
 - Generally, the larger the noise the stronger the response
- · What can we do about it?

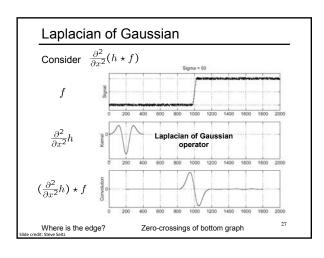
22 Source: D. Forsyth



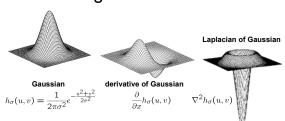








2D edge detection filters

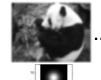


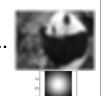
• ∇^2 is the Laplacian operator: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Smoothing with a Gaussian

Recall: parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel, and controls the amount of smoothing.





Effect of σ on derivatives

 σ = 1 pixel

 σ = 3 pixels

The apparent structures differ depending on Gaussian's scale parameter.

Larger values: larger scale edges detected Smaller values: finer features detected

So, what scale to choose? It depends what we're looking for. Side credit: Kristen Grauman

Mask properties

- Smoothing
 - Values positive
 - Sum to 1 → constant regions same as input
 - Amount of smoothing proportional to mask size
 - Remove "high-frequency" components; "low-pass" filter
- Derivatives
 - _____ signs used to get high response in regions of high contrast
 - Sum to ___ → no response in constant regions
 - High absolute value at points of high contrast

ide credit: Kristen Grauma

32

Seam carving: main idea

[Shai & Avidan, SIGGRAPH 2007]

lide credit: Kristen Graum

Seam carving: main idea Content-aware resizing Traditional resizing [Shai & Avidan, SIGGRAPH 2007]

Seam carving: main idea

video

35

Seam carving: main idea

Content-aware resizing

Intuition:

- Preserve the most "interesting" content
 - \rightarrow Prefer to remove pixels with low gradient energy
- To reduce or increase size in one dimension, remove irregularly shaped "seams"
 - → Optimal solution via dynamic programming.

e credit: Kristen Graum

Seam carving: main idea

Energy(f) =
$$\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

- · Want to remove seams where they won't be very noticeable:
 - Measure "energy" as gradient magnitude
- Choose seam based on minimum total energy path across image, subject to 8-connectedness.

Seam carving: algorithm

Energy(f) =
$$\sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

Let a vertical seam **s** consist of *h* positions that form an 8-connected path.

Let the cost of a seam be: $Cost(\mathbf{s}) = \sum_{i=1}^{h} Energy(f(s_i))$ Optimal seam minimizes this cost: $\mathbf{s}^* = \min_{\mathbf{s}} Cost(\mathbf{s})$

Compute it efficiently with dynamic programming. 38

How to identify the minimum cost seam?

- · How many possible seams are there?
 - height h, width w
- First, consider a **greedy** approach:

Energy matrix (gradient magnitude)

Seam carving: algorithm

 Compute the cumulative minimum energy for all possible connected seams at each entry (i,j):

 $\mathbf{M}(i,j) = Energy(i,j) + \min(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1))$

M matrix: cumulative min energy (for vertical seams)

- Then, min value in last row of **M** indicates end of the minimal connected vertical seam.
- Backtrack up from there, selecting min of 3 above in ${\bf M}.$

Example

 $\mathbf{M}(i,j) = Energy(i,j) + \min \big(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1) \big)$

Energy matrix (gradient magnitude)

M matrix (for vertical seams)

Example

 $\mathbf{M}(i,j) = Energy(i,j) + \min \big(\mathbf{M}(i-1,j-1), \mathbf{M}(i-1,j), \mathbf{M}(i-1,j+1) \big)$

Energy matrix (gradient magnitude)

M matrix (for vertical seams)

Real image example Original Image Energy Map Blue = low energy Red = high energy Side credit: Kristen Grauman

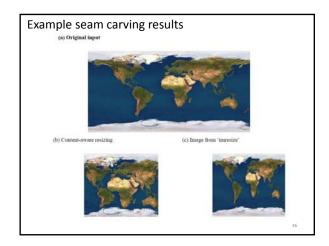
Real image example

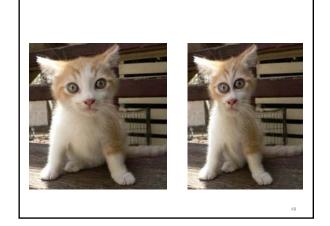
ilide credit: Kristen Grauman

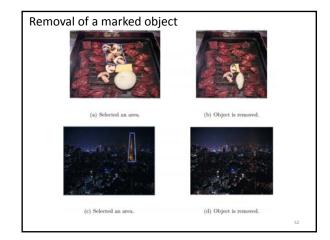
Other notes on seam carving

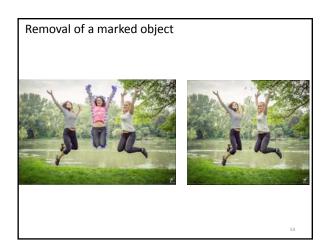
- Analogous procedure for horizontal seams
- Can also insert seams to *increase* size of image in either dimension
 - Duplicate optimal seam, averaged with neighbors
- Other energy functions may be plugged in
 - E.g., color-based, interactive,...
- Can use combination of vertical and horizontal seams

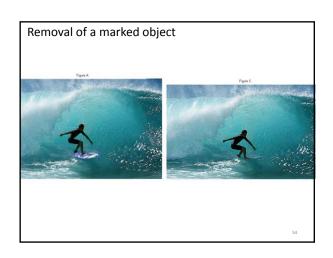
de credit: Kristen Grauma











"Failure cases" with seam carving	
55	
	-
"Failure cases" with seam carving	
56	
Questions?	
See you Tuesday!	