

Previously

- Filters allow local image neighborhood to influence our description and features
 - Smoothing to reduce noise
 - Derivatives to locate contrast, gradient
- Seam carving application:
 - use image gradients to measure "interestingness" or "energy"

2

 remove 8-connected seams so as to preserve image's energy

Today

• Edge detection and matching – process the image gradient to find curves/contours

- comparing contours
- Binary image analysis
 - blobs and regions

8

9

Thresholding

• Choose a threshold value t

dit: Kristen Grai

- Set any pixels less than t to zero (off)
- Set any pixels greater than or equal to t to one (on)

Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

- MATLAB: edge(image, `canny');
- >>help edge

it: Svetlana Laze

Hysteresis thresholding

http://users.ecs.soton.ac.uk/msn/book/ne w_demo/thresholding/

25

26

Recap: Canny edge detector

- Filter image with derivative of Gaussian
- Find magnitude and orientation of gradient
- Non-maximum suppression:
 - Thin wide "ridges" down to single pixel width
- Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB: edge(image, `canny');
- >>help edge

Holistically-Nested Edge Detection (Xie, Tu ICCV 2015)

- holistic image training and prediction
- 2. multi-scale and multi-level feature learning
- 3. Deeply-supervised fully-convolutional network

redit: Kristen Grauman

Distance transform (1D)

Two pass O(n) algorithm for 1D ${\sf L}_1$ norm

. <u>Initialize</u> : For all j D[j] ← 1 _P [j]	// 0 if j is in ${\bf P},$ infinity otherwise									
				Imag	je fea	ature	es (e	dges	;)	
		0	1	0	1	0	0	0	1	0
				Dis	stance	e tra	insfo	rm		

Chamfer distance: properties

- · Sensitive to scale and rotation
- Tolerant of small shape changes, clutter
- Need large number of template shapes
- · Inexpensive way to match shapes

Today

Edge detection and matching

 process the image gradient to find curves/contours
 comparing contours

Binary image analysis

- blobs and regions

redit: Kristen Grauman

Binary image analysis: basic steps

- Convert the image into binary form
 Thresholding
- Clean up the thresholded image
 Morphological operators
- Extract separate blobs – Connected components

lit: Kristen Grau

Describe the blobs with region properties

Thresholding

• Grayscale -> binary mask

redit: Kristen Graum

• Useful if object of interest's intensity distribution is distinct from background

$$F_{T}[i, j] = \begin{cases} 1 & \text{if } F[i, j] \ge T \\ 0 & otherwise. \end{cases}$$

$$F_{T}[i, j] = \begin{cases} 1 & \text{if } T_{1} \le F[i, j] \le T_{2} \\ 0 & otherwise. \end{cases}$$

$$F_{T}[i, j] = \begin{cases} 1 & \text{if } F[i, j] \in Z \\ 0 & otherwise. \end{cases}$$
• Example
$$f_{T}[i, j] = \begin{cases} 1 & \text{if } F[i, j] \in Z \\ 0 & otherwise. \end{cases}$$

Issues

What to do with "noisy" binary outputs?

it: Kristen Grauma

- Extra small fragments
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

59

Morphological operators

- Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image
- Useful to clean up result from thresholding
- · Basic operators are:
 - Dilation

redit: Kristen Grauman

– Erosion

- Erode connected components
- Shrink features
- Remove bridges, branches, noise

Dilation vs. Erosion

- At each position:
- **Dilation**: if **current pixel** is 1, then set all the output pixels corresponding to structuring element to 1.

Example for Dilation										
Input image	1	0	0	0	1	1	1	0	1	1
									Ţ	
Structuring Elemen	ıt							1	1	1
									↓	
Output Image	1	1	0	1	1	1	1	1	1	1
Note that the object gets bigger and holes are filled.										
>> help imdilate 73 Slide credit: Kristen Grauman										

Dilation vs. Erosion

At each position:

- **Dilation**: if **current pixel** is 1, then set all the output pixels corresponding to structuring element to 1.
- **Erosion**: if **every pixel** under the structuring element is 1, then set the output pixel corresponding to the current pixel to 1.

Example for Erosion										
Input image	1	0	0	0	1	1	1	0	1	1
										↓
Structuring Elemen	nt								1	1
Output Image	0	0	0	0	0	1	0	0	0	1
Note that the object gets smaller Slide credit: Kristen Grauman >> help imerode										85

<section-header><section-header><section-header>

Issues

 What to do with "noisy" binary outputs?

- Holes

- Extra small fragments
- How to demarcate multiple regions of interest?
 - Count objects
 - Compute further features per object

Slide credit: Kristen Grauman

Binary image analysis: basic steps (recap)

- Convert the image into binary form
 Thresholding
- Clean up the thresholded image
 Morphological operators
- Extract separate blobs - Connected components

de credit: Kristen Graumar

de adapted from Kristen Grauman

• Describe the blobs with region properties

94

build b

Binary images

- Pros
 - Can be fast to compute, easy to store
 - Simple processing techniques available
 - Lead to some useful compact shape descriptors
- Cons

redit: Kristen Graumar

- Hard to get "clean" silhouettes
- Noise common in realistic scenarios
- Can be too coarse of a representation

Summary Derivative filters · Operations, tools Smoothing, morphology Thresholding Connected components Matching filters Histograms 1111111 • Features, Edges, gradients representations Blobs/regions Local patterns Textures (next) Color distributions

Questions? See you Thursday!