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UC Davis

Previously

• Filters allow local image neighborhood to 
influence our description and features

– Smoothing to reduce noise 

– Derivatives to locate contrast, gradient

• Seam carving application: 

– use image gradients to measure “interestingness” or 
“energy”

– remove 8-connected seams so as to preserve 
image’s energy 
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Review: Partial derivatives of an image
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Slide credit: Kristen Grauman
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(showing filters for correlation)
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Today

• Edge detection and matching
– process the image gradient to find curves/contours

– comparing contours

• Binary image analysis
– blobs and regions
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Edge detection

• Goal: map image from 2d array of pixels to a set of 
curves or line segments or contours.

• Why?

• Main idea: look for strong gradients, post-process

Figure from J. Shotton et al., PAMI 2007

Figure from D. Lowe

Slide credit: Kristen Grauman
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Gradients -> edges

Primary edge detection steps:

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast

3. Edge localization

Determine which local maxima from filter output 
are actually edges vs. noise 

• Threshold, Thin

8

Slide credit: Kristen Grauman

Thresholding

• Choose a threshold value t

• Set any pixels less than t to zero (off)

• Set any pixels greater than or equal to t to one 
(on)
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Slide credit: Kristen Grauman
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Original image
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Slide credit: Kristen Grauman

Gradient magnitude image
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Thresholding gradient with a lower threshold
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Slide credit: Kristen Grauman
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Thresholding gradient with a higher threshold
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Slide credit: Kristen Grauman

Canny edge detector
• Filter image with derivative of Gaussian 

• Find magnitude and orientation of gradient

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and 
the low threshold to continue them

• MATLAB:   edge(image, ‘canny’);

• >>help edge 14

Slide credit: David Lowe, Fei‐Fei Li

The Canny edge detector

original image (Lena)
15

Slide credit: Steve Seitz
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The Canny edge detector

gradient magnitude
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Slide credit: Kristen Grauman

Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

Slide credit: Svetlana Lazebnik
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The Canny edge detector

gradient magnitude

18

Slide credit: Kristen Grauman
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The Canny edge detector

thresholding

19

Slide credit: Kristen Grauman

The Canny edge detector

thresholding

How to turn 
these thick 
regions of the 
gradient into 
curves?
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Slide credit: Kristen Grauman

Non-maximum suppression

Check if pixel is local maximum along gradient direction

Select single max across width of the edge

Requires checking interpolated pixels p and r
21

Slide credit: Kristen Grauman
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The Canny edge detector

thinning

(non-maximum suppression)

Problem: 
pixels along 
this edge 
didn’t 
survive the 
thresholding

22

Slide credit: Kristen Grauman

Hysteresis thresholding

• Use a high threshold to start edge curves, 
and a low threshold to continue them.
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Slide credit: Steve Seitz

Hysteresis thresholding

original image

high threshold
(strong edges)

low threshold
(weak edges)

hysteresis threshold
24

Slide credit: Fei‐Fei Li
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Hysteresis thresholding

http://users.ecs.soton.ac.uk/msn/book/ne
w_demo/thresholding/
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Recap: Canny edge detector
• Filter image with derivative of Gaussian 

• Find magnitude and orientation of gradient

• Non-maximum suppression:

– Thin wide “ridges” down to single pixel width

• Linking and thresholding (hysteresis):

– Define two thresholds: low and high

– Use the high threshold to start edge curves and 
the low threshold to continue them

• MATLAB:   edge(image, ‘canny’);

• >>help edge 26

Slide credit: David Lowe, Fei‐Fei Li

Background Texture Shadows

Low-level edges vs. perceived contours

27Slide credit: Kristen Grauman
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Low-level edges vs. perceived contours

• Berkeley segmentation database:
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

image human segmentation gradient magnitude

28

Slide credit: Svetlana Lazebnik

[D. Martin et al. 
PAMI 2004]

Human-marked segment boundaries

Learn from 
humans which 
combination of 
features is most 
indicative of a 
“good” contour?

29
Slide credit: Kristen Grauman

pB boundary detector

Figure from Fowlkes

Martin, Fowlkes, Malik 2004: Learning to Detection 
Natural Boundaries…
http://www.eecs.berkeley.edu/Research/Projects/C
S/vision/grouping/papers/mfm-pami-boundary.pdf

30
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pB Boundary Detector

Figure from Fowlkes
31

[D. Martin et al. PAMI 2004] 32Slide credit: Kristen Grauman

State-of-the-Art in Contour Detection

Source: Jitendra Malik: http://www.cs.berkeley.edu/~malik/malik-talks-ptrs.html

Prewitt, 
Sobel, 
Roberts

Canny

Canny+opt
thresholds

pB

Human 
agreement

33
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Holistically-Nested Edge Detection 
(Xie, Tu ICCV 2015)

1. holistic image 
training and 
prediction

2. multi-scale and 
multi-level feature 
learning

3. Deeply-supervised 
fully-convolutional 
network

34

State-of-the-Art in Contour Detection

35

HED

pB

Today

• Edge detection and matching
– process the image gradient to find curves/contours

– comparing contours

• Binary image analysis
– blobs and regions

Slide credit: Kristen Grauman
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Figure from Belongie et al.
37

Chamfer distance

• Average distance to nearest feature/edge

I

T

Set of edge points in image

Set of edge points on (shifted) template

)(tdI
Minimum distance between point t 
and some point in I

38

Chamfer distance

Slide credit: Kristen Grauman
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Chamfer distance

• Average distance to nearest feature

Edge image

How is the measure 
different than just 
filtering with a mask 
having the shape 
points?

How expensive is a 
naïve 
implementation?

Slide credit: Kristen Grauman
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Distance TransformImage features (2D)

Distance Transform is a function           that for each image 
pixel  p assigns a  non-negative number            corresponding to 

distance from p to the nearest feature in the image  I

)(D
)(pD

Distance transform

Slide credit: Yuri Boykov

41

Distance transform

original distance transform
edges

Value at (x,y) tells how far 
that position is from the 
nearest edge point (or other 
binary image structure) 

>> help bwdist

Slide credit: Kristen Grauman
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Distance transform (1D)

// 0 if j is in P, infinity otherwise

Slide adapted from Dan Huttonlocher
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0 1 0 1 0 0 0 1 0

Image features (edges)

Distance transform

Distance Transform (2D)

Slide credit: Dan Huttonlocher
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Chamfer distance

• Average distance to nearest feature

Edge image Distance transform image

Slide credit: Kristen Grauman
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Chamfer distance

Fig from D. Gavrila, DAGM 1999

Edge image Distance transform image
46

Chamfer distance: 
properties

• Sensitive to scale and rotation

• Tolerant of small shape changes, clutter

• Need large number of template shapes

• Inexpensive way to match shapes

Slide credit: Kristen Grauman
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Today

• Edge detection and matching
– process the image gradient to find curves/contours

– comparing contours

• Binary image analysis
– blobs and regions

Slide credit: Kristen Grauman
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Binary images

Slide credit: Kristen Grauman
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Binary image analysis: 
basic steps

• Convert the image into binary form 

– Thresholding

• Clean up the thresholded image

– Morphological operators

• Extract separate blobs

– Connected components

• Describe the blobs with region properties

Slide credit: Kristen Grauman
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Binary images

• Two pixel values
– Foreground and background

– Mark region(s) of interest

Slide credit: Kristen Grauman
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Thresholding

• Grayscale -> binary mask

• Useful if object of interest’s intensity distribution 
is distinct from background

• Example
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FITZGIBBON/
simplebinary.html

Slide credit: Kristen Grauman
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Thresholding
• Given a grayscale image or an intermediate matrix 

threshold to create a binary output.

Gradient magnitude

Looking for pixels where gradient is strong.

fg_pix = find(gradient_mag > t);

Example: edge detection

Slide adapted from Kristen Grauman

53

=-

Thresholding
• Given a grayscale image or an intermediate matrix 

threshold to create a binary output.

Example: background subtraction

Looking for pixels that differ significantly 
from the “empty” background.

fg_pix = find(diff > t);Slide credit: Kristen Grauman
54
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Thresholding
• Given a grayscale image or an intermediate matrix 

threshold to create a binary output.

Example: intensity-based detection

Looking for dark pixels

fg_pix = find(im < 65);

Slide credit: Kristen Grauman
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Thresholding
• Given a grayscale image or an intermediate matrix 

threshold to create a binary output.

Example: color-based detection

Looking for pixels within a certain hue range.

fg_pix = find(hue > t1 & hue < t2);

Slide credit: Kristen Grauman
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A nice case: bimodal intensity 
histograms

Ideal histogram, 
light object on 
dark background

Actual observed 
histogram with 
noise

Images: http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT2/node3.html
57
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Not so nice cases

Slide credit: Shapiro and Stockman
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Issues

• What to do with “noisy” binary 
outputs?
– Holes

– Extra small fragments

• How to demarcate multiple 
regions of interest? 
– Count objects

– Compute further features per 
object

Slide credit: Kristen Grauman
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Morphological operators

• Change the shape of the foreground regions via 
intersection/union operations between a 
scanning structuring element and binary image

• Useful to clean up result from thresholding

• Basic operators are:

– Dilation

– Erosion

Slide credit: Kristen Grauman
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Dilation

• Expands connected components

• Grow features

• Fill holes

Before dilation After dilation

Slide credit: Kristen Grauman
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Erosion

• Erode connected components

• Shrink features

• Remove bridges, branches, noise

Before erosion After erosion

Slide credit: Kristen Grauman
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Structuring elements

• Masks of varying shapes and sizes used to 
perform morphology, for example:

• Scan mask across foreground pixels to 
transform the binary image

>> help strel

Slide credit: Kristen Grauman
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Dilation vs. Erosion

At each position:
• Dilation: if current pixel is 1, then set all the 

output pixels corresponding to structuring 
element to 1.

64

Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1Output Image

111

65

Slide credit: Adapted by Kristen Grauman from T. Moeslund

Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 1 1 1Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 1 1 1 1Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 1 1 1 1 1Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 1 1 1 1 1Output Image

111

Slide credit: Kristen Grauman
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Example for Dilation

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

1 1 0 1 1 1 1 1 1 1Output Image

111

Note that the object gets bigger and holes are filled.
>> help imdilate

Slide credit: Kristen Grauman
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2D example for dilation

Slide credit: Shapiro & Stockman
74

Dilation vs. Erosion

At each position:
• Dilation: if current pixel is 1, then set all the 

output pixels corresponding to structuring 
element to 1.

• Erosion: if every pixel under the structuring 
element is 1, then set the output pixel 
corresponding to the current pixel to 1.

75
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Example for Erosion (1D)

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion (1D)

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0 1Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0 1 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0 1 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0 1 0 0 0Output Image

111

Slide credit: Kristen Grauman
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Example for Erosion

1 0 0 0 1 1 1 0 1 1Input image

Structuring Element

0 0 0 0 0 1 0 0 0 1Output Image

111

Note that the object gets smaller
>> help imerode

Slide credit: Kristen Grauman
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2D example for erosion

Slide credit: Shapiro & Stockman
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Opening
• Erode, then dilate

• Remove small objects, keep original shape

Before opening After opening

Slide credit: Kristen Grauman
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Closing
• Dilate, then erode 

• Fill holes, but keep original shape

Before closing After closing

Applet: http://bigwww.epfl.ch/demo/jmorpho/start.php
Slide credit: Kristen Grauman
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Issues

• What to do with “noisy” binary 
outputs?
– Holes

– Extra small fragments

• How to demarcate multiple 
regions of interest? 
– Count objects

– Compute further features per 
object

Slide credit: Kristen Grauman
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Connected components

• Identify distinct regions of “connected pixels”

90>> L = bwlabel(BW,conn)
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Connectedness

• Defining which pixels are considered neighbors

4-connected 8-connected

Slide credit: Chaitanya Chandra
91

Connected components

Slide credit: Pinar Duygulu
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Region properties

• Given connected components, can compute 
simple features per blob, such as:
– Area (num pixels in the region)

– Centroid (average x and y position of pixels in the region)

– Bounding box (min and max coordinates)

A1=200
A2=170

Slide credit: Kristen Grauman
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Binary image analysis: 
basic steps (recap)

• Convert the image into binary form 

– Thresholding

• Clean up the thresholded image

– Morphological operators

• Extract separate blobs

– Connected components

• Describe the blobs with region properties

Slide credit: Kristen Grauman
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Matlab

• L = bwlabel (BW,8);
• STATS = regionprops(L,PROPERTIES) ;

– 'Area'
– 'Centroid'          
– 'BoundingBox'    
– 'Orientation‘, …

• IM2 = imerode(IM,SE);
• IM2 = imdilate(IM,SE);
• IM2 = imclose(IM, SE);
• IM2 = imopen(IM, SE);

Slide adapted from Kristen Grauman
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Example using binary image analysis: 
segmentation of a liver

Slide credit: Li Shen
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Binary images
• Pros

– Can be fast to compute, easy to store

– Simple processing techniques available

– Lead to some useful compact shape descriptors

• Cons
– Hard to get “clean” silhouettes

– Noise common in realistic scenarios

– Can be too coarse of a representation

Slide credit: Kristen Grauman
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Summary
• Operations, tools

• Features, 
representations

Edges, gradients

Blobs/regions

Local patterns

Textures (next)

Color distributions

Derivative filters

Smoothing, morphology

Thresholding

Connected components

Matching filters

Histograms

98

Coming up

• Texture
– Read Szeliski 10.5
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Questions?

See you Thursday!

100


