

Announcements

- PS1 out today
 - Due 5/1st, 11:59 pm
 - start early!

Review: last time

- Edge detection:
 - Filter for gradient
 - Threshold gradient magnitude, thin
- Chamfer matching to compare shapes (in terms of edge points)
- Binary image analysis
 - Thresholding
 - Morphological operators to "clean up"

Texture-related tasks

Shape from texture

redit: Kristen Grauma

 Estimate surface orientation or shape from image texture

Texture-related tasks

- Shape from texture
 - Estimate surface orientation or shape from image texture
- Classification/segmentation from texture cues – Analyze, represent texture
 - Group image regions with consistent texture
- Synthesis

de credit: Kristen Grauman

 Generate new texture patches/images given some examples

12

Why analyze texture?

Importance to perception:

ide credit: Kristen Grauman

• Often indicative of a material's properties

Why analyze texture?

Importance to perception:

edit: Kristen Graum

- Often indicative of a material's properties
- Can be important appearance cue, especially if shape is similar across objects

17

Kit credit. Kristen Gruma

Why analyze texture?

Importance to perception:

edit: Kristen Graum

- Often indicative of a material's properties
- Can be important appearance cue, especially if shape is similar across objects
- Aim to distinguish between boundaries and texture

Why analyze texture?

Importance to perception:

- Often indicative of a material's properties
- Can be important appearance cue, especially if shape is similar across objects
- Aim to distinguish between boundaries and texture

Technically:

• Representation-wise, we want a feature one step above "building blocks" of filters, edges.

Slide credit: Kristen Grauman

21

r			
	A A A A A A A A A A A A A A	**** ********************************	
	Images from Malik	and Perona, 1990	22

Texture representation

- Textures are made up of repeated local patterns, so:
 - Find the patterns

de credit: Kristen Grauman

- Use filters that look like patterns (spots, bars, raw patches...)
- Consider magnitude of response
- Describe their statistics within each local window
 - Mean, standard deviation
 - Histogram of "prototypical" feature occurrences

28

Texture representation: window scale

• The window size (i.e., scale) for which we collect these statistics is important.

Possible to perform scale selection by looking for window scale where texture description not changing.

Filter banks

- Our previous example used two filters, and resulted in a 2-dimensional feature vector to describe texture in a window
 - x and y derivatives revealed something about local structure
- We can generalize to apply a collection of multiple (*d*) filters: a "filter bank"

ide credit: Kristen Grauman

• Then our feature vectors will be *d*-dimensional – still can think of nearness, farness in feature space

39

Texture-related tasks

- Shape from texture
 - Estimate surface orientation or shape from image texture
- Segmentation/classification from texture cues
 - Analyze, represent texture
 - Group image regions with consistent texture
- Synthesis
 - Generate new texture patches/images given some examples

71

Slide credit: Kristen Graumar

The Challenge

 Need to model the whole spectrum: from repeated to stochastic texture

stochastic

Both?

Alexei A. Efros and Thomas K. Leung, "Texture Synthesis by Non-parametric Sampling," Proc. International Conference on Computer Vision (ICCV), 1999.

Text synthesis

- Results:
 - "As I've commented before, really relating to someone involves standing next to impossible."
 - "One morning I shot an elephant in my arms and kissed him."
 - "I spent an interesting evening recently with a grain of salt"

Dewdney, "A potpourri of programmed prose and prosody" Scientific American, 1989. Side from Alyosha Erros, ICCV 1999 78

• The Efros & Leung algorithm

- Simple

- Surprisingly good results
- Synthesis is easier than analysis!

- ...but very slow

Texture Transfer

- Take the texture from one object and "paint" it onto another object
 - This requires separating texture and shape
 - That's HARD, but we can cheat
 - Assume we can capture shape by boundary and rough shading
- ure shape

102

• Then, just add another constraint when sampling: similarity to underlying image at that spot

Slide credit: Alyosha Efros

<section-header><section-header><text>

(Manual) texture synthesis in the media

Summary

- Texture is a useful property that is often indicative of materials, appearance cues
- **Texture representations** attempt to summarize repeating patterns of local structure
- Filter banks useful to measure variety of structures in local neighborhood
 - Feature spaces can be multi-dimensional
- Neighborhood statistics can be exploited to "sample" or **synthesize** new texture regions
 - Example-based technique

Questions? See you Tuesday!