

### Outline

- What are grouping problems in vision?
- · Inspiration from human perception
  - Gestalt properties
- · Bottom-up segmentation via clustering
  - Algorithms:
    - Mode finding and mean shift: k-means, mean-shift
    - Graph-based: normalized cuts
  - Features: color, texture, ...
    - · Quantization for texture summaries

Slide credit: Kristen Grauman

### Grouping in vision

- · Goals:
  - Gather features that belong together
  - Obtain an intermediate representation that compactly describes key image or video parts

### Examples of grouping in vision







Slide credit: Kristen Grauman

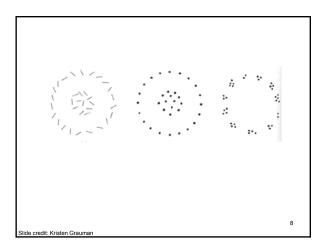
Determine image regions

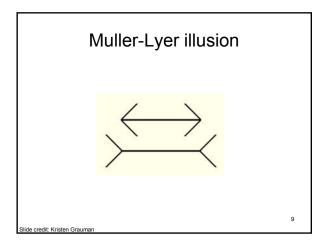
2

### Grouping in vision

- · Goals:
  - Gather features that belong together
  - Obtain an intermediate representation that compactly describes key image (video) parts
- Top down vs. bottom up segmentation
  - Top down: pixels belong together because they are from the same object
  - Bottom up: pixels belong together because they look similar
- · Hard to measure success
  - What is interesting depends on the app.

Slide credit: Kristen Grauman





| _ |  |  |  |
|---|--|--|--|
| 2 |  |  |  |
|   |  |  |  |
|   |  |  |  |

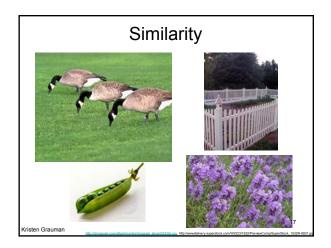
| Muller-Lyer illusion      |   |
|---------------------------|---|
|                           |   |
|                           |   |
|                           |   |
|                           |   |
| Slide credit: Devi Parikh |   |
|                           |   |
|                           |   |
| Madles Lago illusion      |   |
| Muller-Lyer illusion      | - |
|                           | - |
|                           | - |
|                           | - |
|                           |   |
| Slide credit: Devi Parikh |   |
|                           |   |
|                           |   |
|                           |   |
| Muller-Lyer illusion      |   |
|                           |   |
|                           |   |
|                           |   |
|                           |   |
|                           |   |

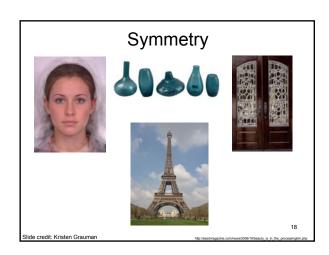
| What things should be grouped?                                                                                                  |     |  |
|---------------------------------------------------------------------------------------------------------------------------------|-----|--|
| What cues indicate groups?                                                                                                      |     |  |
|                                                                                                                                 |     |  |
|                                                                                                                                 |     |  |
| 13                                                                                                                              | ] . |  |
|                                                                                                                                 |     |  |
|                                                                                                                                 |     |  |
| Gestalt                                                                                                                         | ]   |  |
| Gestalt: whole or group                                                                                                         |     |  |
| <ul> <li>Whole is greater than sum of its parts</li> <li>Relationships among parts can yield new properties/features</li> </ul> |     |  |
|                                                                                                                                 |     |  |
| Psychologists identified series of factors that predispose a set of elements to be grouped (by                                  |     |  |
| human visual system)                                                                                                            |     |  |
| 14 Slide credit: Kristen Grauman                                                                                                |     |  |
|                                                                                                                                 |     |  |
|                                                                                                                                 |     |  |
| Gestalt                                                                                                                         |     |  |

Figure 14.4 from Forsyth and Ponce

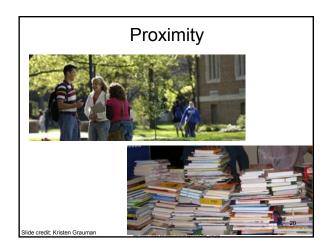
15

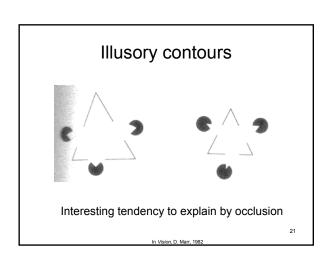
## Gestalt Slide credit: Devi Parikh

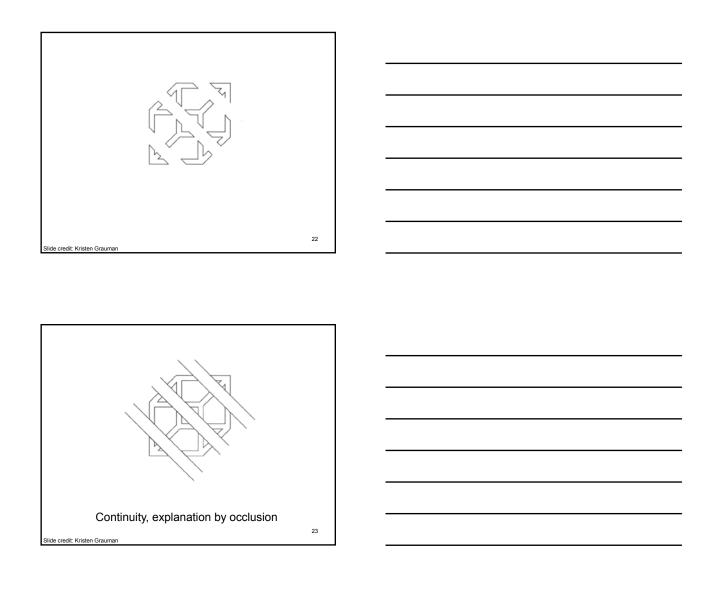


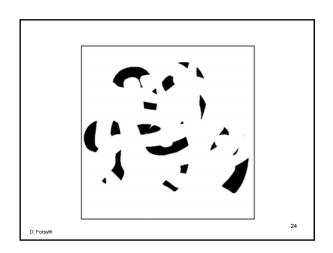


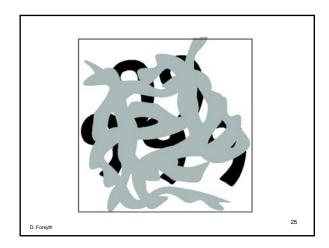
## Common fate Image Credit: Arthus-Bertrand (via F. Duand) Slide Credit: Kristen Grauman

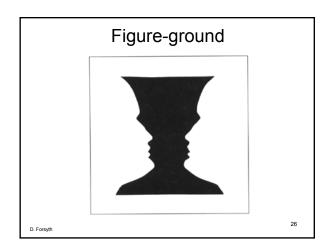


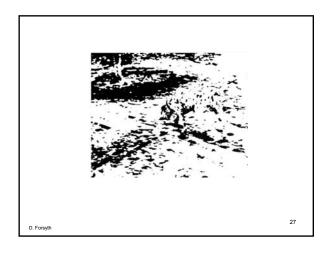












### 

### 

### Gestalt

- · Gestalt: whole or group
  - Whole is greater than sum of its parts
  - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)
- Inspiring observations/explanations; challenge remains how to best map to algorithms.

Slide credit: Kristen Grauman

30

### Outline

- What are grouping problems in vision?
- · Inspiration from human perception
  - Gestalt properties
- Bottom-up segmentation via clustering
  - Algorithms:
    - Mode finding and mean shift: k-means, mean-shift
    - Graph-based: normalized cuts
  - Features: color, texture, ...
    - · Quantization for texture summaries

Slide credit: Kristen Grauman

31

### The goals of segmentation

Separate image into coherent "objects"

image









32 rce: Lana Lazel

### The goals of segmentation

Separate image into coherent "objects"

Group together similar-looking pixels for efficiency of further processing

"superpixels"

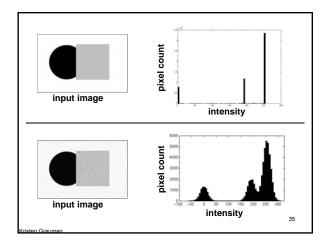


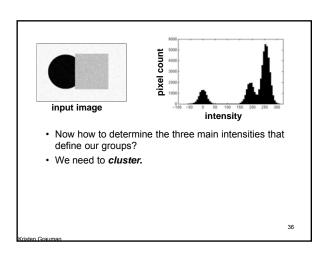


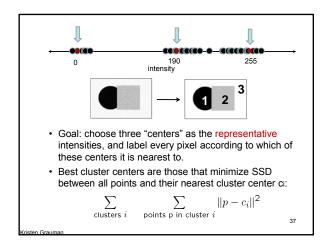
X. Ren and J. Malik. Learning a classification model for segmentation. ICCV 2003.

Source: Lana Lazebni

### Image segmentation: toy example Image segmentation: toy example | We could label every pixel in the image according to which of these primary intensities it is. | i.e., segment the image based on the intensity feature. | What if the image isn't quite so simple?







### Clustering

- With this objective, it is a "chicken and egg" problem:
  - If we knew the cluster centers, we could allocate points to groups by assigning each to its closest center.



- If we knew the **group memberships**, we could get the centers by computing the mean per group.



### K-means clustering

- Basic idea: randomly initialize the  $\emph{k}$  cluster centers, and iterate between the two steps we just saw.
  - 1. Randomly initialize the cluster centers,  $c_1,\,...,\,c_K$
  - 2. Given cluster centers, determine points in each cluster
  - For each point p, find the closest c<sub>i</sub>. Put p into cluster i
  - 3. Given points in each cluster, solve for c<sub>i</sub>

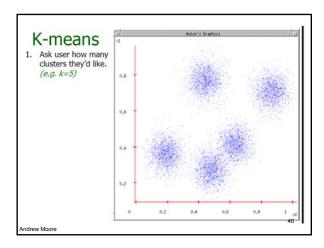
     Set c<sub>i</sub> to be the mean of points in cluster i

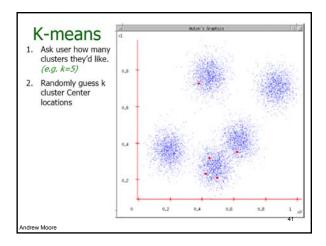
### 4. If c<sub>i</sub> have changed, repeat Step 2

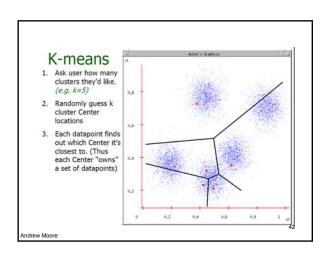
### Properties

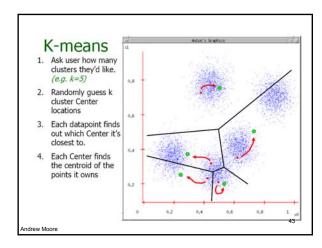
- Will always converge to some solution
- Can be a "local minimum"

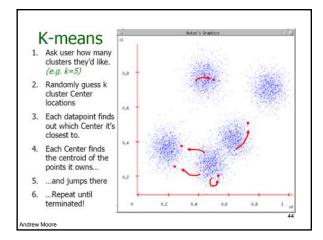
• does not always find the global minimum of objective function: 
$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p-c_i||^2$$











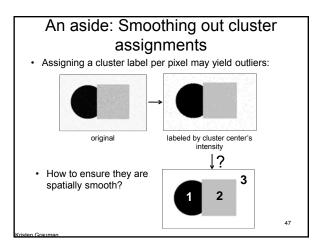
### K-means clustering

• Demo

http://home.dei.polimi.it/matteucc/Clustering/tutoria

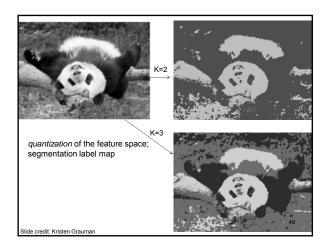
Slide credit: Kristen Grauman

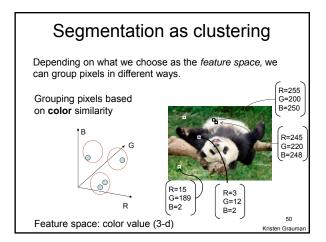
### K-means: pros and cons Pros Simple, fast to compute Converges to local minimum of within-cluster squared error Cons/issues Setting k? Sensitive to initial centers Sensitive to outliers Detects spherical clusters



Slide credit: Kristen Grauman

# Segmentation as clustering Depending on what we choose as the feature space, we can group pixels in different ways. Grouping pixels based on intensity similarity Feature space: intensity value (1-d)





### Segmentation as clustering Depending on what we choose as the *feature space*, we can group pixels in different ways. Grouping pixels based on intensity similarity Clusters based on intensity similarity don't have to be spatially

coherent.

### Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **intensity+position** similarity





Both regions are black, but if we also include **position** (x,y), then we could group the two into distinct segments; way to encode both similarity & proximity.

Kristen Grauman

### Segmentation as clustering

• Color, brightness, position alone are not enough to distinguish all regions...







Slide credit: Kristen Grauman

### Segmentation as clustering

Depending on what we choose as the *feature space*, we can group pixels in different ways.

Grouping pixels based on **texture** similarity

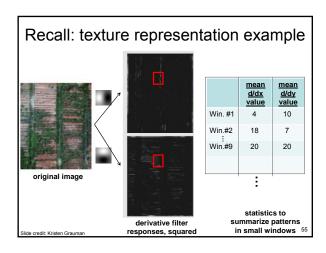


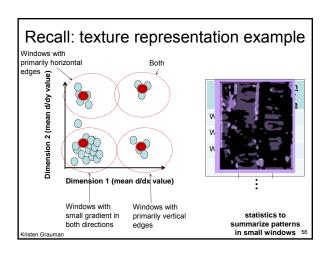


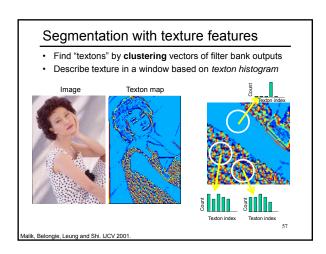


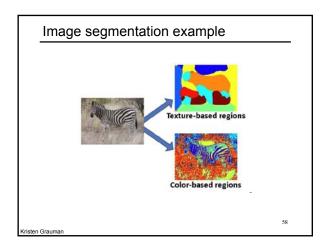
Feature space: filter bank responses (e.g., 24-d)

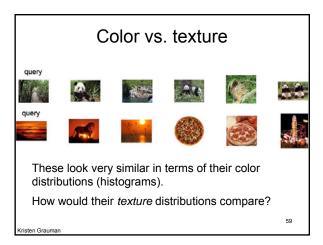
de credit: Kristen Grauman

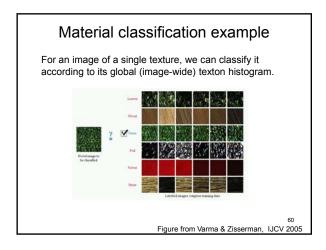












## Material classification example Nearest neighbor classification: label the input according to the nearest known example's label. $\chi^2(h_i,h_j) = \frac{1}{2} \sum_{k=1}^K \frac{[h_i(k) - h_j(k)]^2}{h_i(k) + h_j(k)}$ Manik Varma http://www.robots.ox.ac.uk/~vgg/research/texclassow/ih.html

### Outline

- · What are grouping problems in vision?
- · Inspiration from human perception
  - Gestalt properties
- · Bottom-up segmentation via clustering
  - Algorithms:
    - Mode finding and mean shift: k-means, mean-shift
    - Graph-based: normalized cuts
  - Features: color, texture, ...
    - · Quantization for texture summaries

Slide credit: Kristen Grauman

62

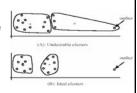
### K-means: pros and cons

### Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

### Cons/issues

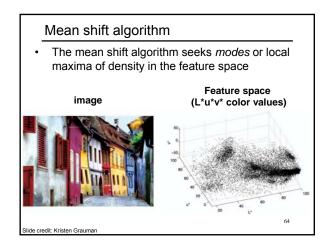
- Setting k?
- · Sensitive to initial centers
- Sensitive to initial constitutions
- · Detects spherical clusters

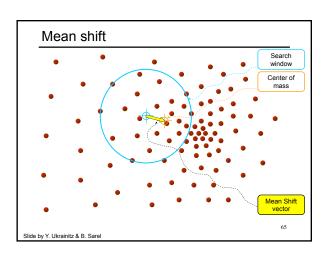


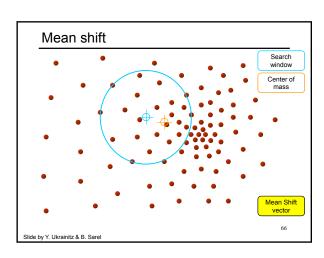


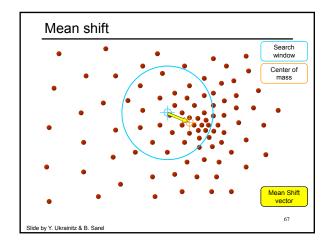


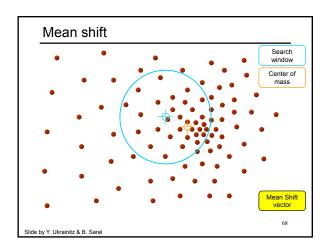
Slide credit: Kristen Grauman

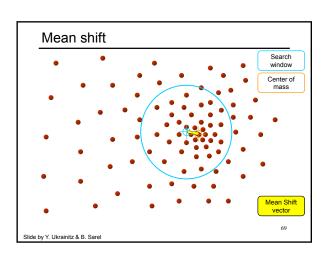


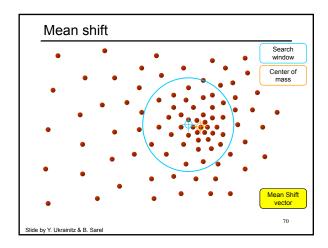


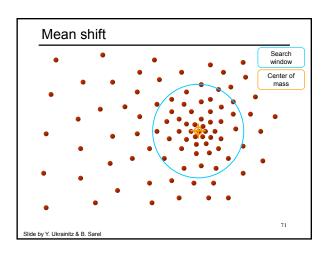










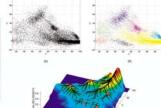


## Mean shift clustering • Cluster: all data points in the attraction basin of a mode • Attraction basin: the region for which all trajectories lead to the same mode \*\*Slide by Y. Ukrainitz & B. Sarel\*\*

### Mean shift clustering/segmentation

- Find features (color, gradients, texture, etc)
- · Initialize windows at individual feature points
- · Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode





Slide credit: Kristen Grauman

### Mean shift segmentation results









Slide credit: Kristen Grauman

### Mean shift

### • Pros:

- Does not assume shape on clusters
- One parameter choice (window size)
- Generic technique
- Find multiple modes

### Cons:

- Selection of window size
- Does not scale well with dimension of feature space

Kristen Grauman

75

### Outline

- What are grouping problems in vision?
- · Inspiration from human perception
  - Gestalt properties
- · Bottom-up segmentation via clustering
  - Algorithms:
    - Mode finding and mean shift: k-means, mean-shift
    - Graph-based: normalized cuts
  - Features: color, texture, ...
    - · Quantization for texture summaries

Slide credit: Kristen Grauman

### Images as graphs





### Fully-connected graph

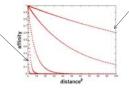
- · node (vertex) for every pixel
- link between every pair of pixels, p,q
- affinity weight w<sub>pq</sub> for each link (edge)
   w<sub>pq</sub> measures similarity
   » similarity is inversely proportional to difference (in color and position...)

### Measuring affinity

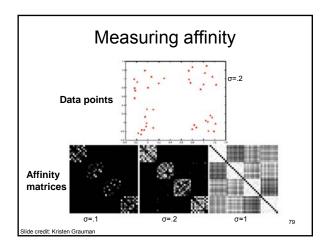
• One possibility:

$$aff(x,y) = \exp\left\{-\left(\frac{1}{2\sigma_d^2}\right)\left(\left\|x - y\right\|^2\right)\right\}$$

Small sigma: group only nearby points



Large sigma: group distant points



### Segmentation by Graph Cuts

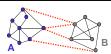




Break Graph into Segments

- Want to delete links that cross between segments
- Easiest to break links that have low similarity (low weight)
  - similar pixels should be in the same segments
  - dissimilar pixels should be in different segments

### Cuts in a graph: Min cut



Link Cut

- set of links whose removal makes a graph disconnected

• cost of a cut: 
$$cut(A,B) = \sum_{p \in A, q \in B} w_{p,q}$$

Find minimum cut

- gives you a segmentation fast algorithms exist for doing this

### Minimum cut

Problem with minimum cut:
 Weight of cut proportional to number of edges in the cut;
 tends to produce small, isolated components.

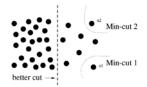
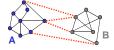


Fig. 1. A case where minimum cut gives a bad partition.

[Shi & Malik, 2000 PAMI]

Slide credit: Kristen Grauman

### Cuts in a graph: Normalized cut



Normalized Cut

• fix bias of Min Cut by **normalizing** for size of segments:

$$Ncut(A, B) = \frac{cut(A, B)}{assoc(A, V)} + \frac{cut(A, B)}{assoc(B, V)}$$

 $\operatorname{assoc}(A,V)$  = sum of weights of all edges in A to all nodes V

- Ncut value small when we get two clusters with many edges with high weights, and few edges of low weight between them
- Approximate solution for minimizing the Ncut value: generalized eigenvalue problem.

83

I. Shi and I. Malik Normalized Cuts and Image Segmentation, CVPR, 1997.

ource: Steve Seitz

82

### Example results Output Description: Descr

### Normalized cuts: pros and cons

### Pros:

- · Generic framework, flexible to choice of function that computes weights ("affinities") between nodes
- · Does not require model of the data distribution

- · Time complexity can be high
  - Dense, highly connected graphs → many affinity computations
  - Solving eigenvalue problem
- · Preference for balanced partitions

Kristen Grauman

### Motion segmentation













A.Barbu, S.C. Zhu. Generalizing Swendsen-Wang to sampling arbitrary posterior probabilities, *IEEE Trans. PAMI*, August 2005.

### Summary

- · Segmentation to find object boundaries or midlevel regions, tokens.
- Bottom-up segmentation via clustering
  - General choices -- features, affinity functions, and clustering algorithms
- Grouping also useful for quantization, can create new feature summaries
  - Texton histograms for texture within local region
- · Example clustering methods
  - K-means
  - Mean shift
  - Graph cut, normalized cuts

| ാ |  |
|---|--|
|   |  |
|   |  |

| Questions?        |  |
|-------------------|--|
| See you Thursday! |  |
|                   |  |
| 88                |  |