

Last time

- Feature-based alignment
 - 2D transformations
 - Affine fit
 - RANSAC

Alignment problem

• In alignment, we will **fit the parameters of some transformation** according to a set of matching feature pairs ("correspondences").

Slide credit: Adapted by Devi Parikh from Kristen Grauman

Main questions Alignment: Given two images, what is the transformation between them? Warping: Given a source image and a transformation, what does the transformed output look like? Slide credit: Kristen Grauman

Motivation for feature-based alignment: Image mosaics

/
Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

Parametric	(global)	warping
------------	----------	---------

Examples of parametric warps:

agnect

affine

8 Source: Alyosha Efro

Parametric (global) warping

 $\mathbf{p} = (\mathbf{x}, \mathbf{y})$

 $\mathbf{p} - (\mathbf{x}, \mathbf{y})$

Transformation T is a coordinate-changing machine:

p' = T(p)

What does it mean that T is **global**?

- Is the same for any point p
- can be described by just a few numbers (parameters)

Let's represent *T* as a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x \\ y \end{bmatrix}$$

9 Source: Alvoeba Ef

Homogeneous coordinates

To convert to homogeneous coordinates:

$$(x,y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

homogeneous image coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)$$

Slide credit: Kristen Grauman

2D Affine Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Affine transformations are combinations of ...

- · Linear transformations, and
- Translations

Parallel lines remain parallel

Slide credit: Kristen Grauman

Projective Transformations

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Projective transformations:

- · Affine transformations, and
- Projective warps

Parallel lines do not necessarily remain parallel

Slide credit: Kristen Grauman

12

10

Fitting an affine transformation

 $(x_i, y_i)_{\bullet}$

Assuming we know the correspondences, how do we get the transformation?

RANSAC: General form

- RANSAC loop:
- Randomly select a *seed group* of points on which to base transformation estimate (e.g., a group of matches)
- 2. Compute transformation from seed group
- 3. Find inliers to this transformation
- 4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers
- Keep the transformation with the largest number of inliers

Slide credit: Kristen Grauman

14

RANSAC example: Translation

15 Source: Rick Szeliski

16

RANSAC example: Translation

17

RANSAC pros and cons

- Pros
 - Simple and general
 - Applicable to many different problems
 - Often works well in practice
- Cons
 - · Lots of parameters to tune
 - Doesn't work well for low inlier ratios (too many iterations, or can fail completely)

Lana Lazebnik

Today

- · Image mosaics
 - Fitting a 2D transformation
 - Homography
 - 2D image warping
 - Computing an image mosaic

19

HP frames commercial

• http://www.youtube.com/watch? v=2RPI5vPEoQk

20

Mosaics Image from 8 Seliz Obtain a wider angle view by combining multiple images.

Slide credit: Kristen Grauman

Panoramic Photos are old

• Sydney, 1875

Beirut, late 1800's

Slide credit: James Hays

How to stitch together a panorama (a.k.a. mosaic)?

- · Basic Procedure
 - Take a sequence of images from the same position
 - · Rotate the camera about its optical center
 - Compute transformation between second image and first
 - Transform the second image to overlap with the first
 - Blend the two together to create a mosaic
 - (If there are more images, repeat)
- ...but wait, why should this work at all?
 - What about the 3D geometry of the scene?
 - Why aren't we using it?

Pinhole camera

· Pinhole camera is a simple model to approximate imaging process, perspective projection.

If we treat pinhole as a point, only one ray from any given point can enter the camera.

Slide credit: Kristen Grauman

Fig from Forsyth and Ponce

Image reprojection Basic question How to relate two images from the same camera center? how to map a pixel from PP1 to PP2 Answer Cast a ray through each pixel in PP1 Draw the pixel where that ray intersects PP2

Observation: Rather than thinking of this as a 3D reprojection, think of it as a 2D **image warp** from one image to another.

Image reprojection: Homography

A projective transform is a mapping between any two PPs with the same center of projection

· rectangle should map to arbitrary quadrilateral

parallel lines aren't preservedbut must preserve straight lines

called Homography

The projective plane

Why do we need homogeneous coordinates?

 represent points at infinity, homographies, perspective projection, multi-view relationships

What is the geometric intuition?

• a point in the image is a ray in projective space

- Each point (x,y) on the plane is represented by a ray (sx,sy,s)
- all points on the ray are equivalent: $(x, y, 1) \cong (sx, sy, s)$

Homography

To **compute** the homography given pairs of corresponding points in the images, we need to set up an equation where the parameters of **H** are the unknowns...

Slide credit: Kristen Grauman

Solving for homographies

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Upto a scale factor.

Constraint Frobenius norm of H to be 1.

Problem to be solved:

$$\min \|Ah - b\|^2$$

$$s.t. \quad \left\| h \right\|^2 = 1$$

where vector of unknowns $\mathbf{h} = [h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22}]^\mathsf{T}$

32

Solving for homographies

$$\begin{bmatrix} wx_i' \\ wy_i' \\ w \end{bmatrix} = \begin{bmatrix} h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22} \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$

$$\begin{aligned} wx_i' &= h_{00}x_i + h_{01}y_i + h_{02} \\ wy_i' &= h_{10}x_i + h_{11}y_i + h_{12} \\ w &= h_{20}x_i + h_{21}y_i + h_{22} \end{aligned}$$

 $\begin{array}{lll} x_i'(h_{20}x_i+h_{21}y_i+h_{22}) &=& h_{00}x_i+h_{01}y_i+h_{02} \\ y_i'(h_{20}x_i+h_{21}y_i+h_{22}) &=& h_{10}x_i+h_{11}y_i+h_{12} \end{array}$

$$\begin{bmatrix} x_i & y_i & 1 & 0 & 0 & 0 & -x_i'x_i & -x_i'y_i & -x_j' \\ 0 & 0 & 0 & x_i & y_i & 1 & -y_i'x_i & -y_i'y_i & -y_i' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{01} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Solving for homographies

$$\begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 & -x_1'x_1 & -x_1'y_1 & -x_1' \\ 0 & 0 & 0 & x_1 & y_1 & 1 & -y_1'x_1 & -y_1'y_1 & -y_1' \\ \vdots & \vdots \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -x_n'y_n & -x_n' \\ 0 & 0 & 0 & x_n & y_n & 1 & -y_n'x_n & -y_n'y_n & y_n' \end{bmatrix} \begin{bmatrix} h_{00} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{22} \\ h_{22} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$

$$A \qquad \qquad h \qquad 0$$

$$2n \times 9 \qquad 9 \qquad 2n$$

Defines a least squares problem:

minimize $\|Ah-0\|^2$

- Since h is only defined up to scale, solve for unit vector $\hat{\mathbf{h}}$ $(i.e., ||h||^2 = 1)$
- Solution: \hat{h} = eigenvector of $A^{T}A$ with smallest eigenvalue
- · Works with 4 or more points

Homography

To **apply** a given homography **H**

- Compute p' = Hp (regular matrix multiply)
- Convert p' from homogeneous to image coordinates

Slide credit: Kristen Grauman

$$\begin{bmatrix} wx' \\ wy' \\ w \end{bmatrix} = \begin{bmatrix} * & * & * \\ * & * & * \\ * & * & * \end{bmatrix} \begin{bmatrix} x \\ y \\ I \end{bmatrix}$$

$$\mathbf{p}^{35}$$

Today

- · RANSAC for robust fitting
 - Lines, translation
- Image mosaics
 - Fitting a 2D transformation
 - Homography
 - 2D image warping
 - Computing an image mosaic

c

Image warping

Given a coordinate transform and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Slide from Alvosha Efros

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

Slide from Alyosha Efros

38

39

Forward warping

Send each pixel f(x,y) to its corresponding location (x',y') = T(x,y) in the second image

Q: what if pixel lands "between" two pixels?

A: distribute color among neighboring pixels (x',y')

Known as "splatting"

Slide from Alyosha Efros

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

Slide from Alvosha Efros

40

Inverse warping

Get each pixel g(x',y') from its corresponding location $(x,y) = T^{-1}(x',y')$ in the first image

Q: what if pixel comes from "between" two pixels?

A: Interpolate color value from neighbors

nearest neighbor, bilinear...>> help interp2 41

lide from Alyosha Efros

Bilinear interpolation

Sampling at f(x,y):

$$(i, j + 1)$$
 $(i + 1, j + 1)$ (x, y) a b $(i + 1, j)$

$$f(x,y) = (1-a)(1-b) f[i,j] +a(1-b) f[i+1,j] +ab f[i+1,j+1] +(1-a)b f[i,j+1]$$

Slide from Alyosha Efros

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- · Basic Procedure
 - Take a sequence of images from the same position
 - Rotate the camera about its optical center
 - Compute transformation (homography) between second image and first using corresponding points.
 - Transform the second image to overlap with the first.
 - Blend the two together to create a mosaic.
 - (If there are more images, repeat)

43 Source: Steve Seitz

Image warping with homographies image plane in front black area where no pixel maps to 44 Source Share Share

What is the (complicated) shape of the floor pattern? Automatically rectified floor St. Lucy Altarpiece, D. Veneziano Slide from Criminisi

Analysing patterns and shapes

Recall: same camera center real synthetic camera Can generate synthetic camera view as long as it has the same center of projection. 52 Source: Alyesha Efros

RANSAC for estimating homography • RANSAC loop:

- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute *inliers* where $SSD(p_i', Hp_i) < \varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

Robust feature-based alignment

Robust feature-based alignment

· Extract features

Robust feature-based alignment

- Extract features
- Compute putative matches

58

Robust feature-based alignment

- · Extract features
- Compute putative matches
- · Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

59 Source: L. Lazebnii

Robust feature-based alignment

- · Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Summary: alignment & warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- **Fitting transformations**: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Perform image warping (inverse)
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Slide credit: Kristen Grauman

62

Next time: which features should we match?

Slide credit: Kristen Grauman

Questions?	
64	