
\qquad

Last time	
- Feature-based alignment	
- 2D transformations	
- Affine fit	
- RANSAC	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Alignment problem

\qquad
\qquad
\qquad transformation according to a set of matching feature pairs ("correspondences").
\qquad
\qquad
\qquad
\qquad

Motivation for feature-based alignment: Recognition

Figures from David Lowe

Motivation for feature-based alignment: Image mosaics

Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/

Parametric (global) warping \qquad
Examples of parametric warps:

affine

perspective
\qquad

Parametric (global) warping \qquad

\qquad
\qquad
Transformation T is a coordinate-changing machine:

$$
\mathrm{p}^{\prime}=T(\mathrm{p})
$$

What does it mean that T is global?
\qquad

- Is the same for any point p
- can be described by just a few numbers (parameters) \qquad
Let's represent T as a matrix:

$$
\mathrm{p}^{\prime}=\mathrm{Mp}
$$

\qquad

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\mathbf{M}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

\qquad

Homogeneous coordinates

\qquad

To convert to homogeneous coordinates:

$$
\begin{aligned}
& (x, y) \Rightarrow\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] \\
& \text { homogeneous image } \\
& \text { coordinates }
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad

$$
\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right] \Rightarrow(x / w, y / w)
$$

\qquad
\qquad
Slide credit: Kristen Grauman

2D Affine Transformations

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

\qquad
\qquad

Affine transformations are combinations of ... \qquad

- Linear transformations, and
- Translations

Parallel lines remain parallel

Slide credit: Kristen Grauman

Projective Transformations \qquad

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
w
\end{array}\right]
$$

Projective transformations:

- Affine transformations, and
- Projective warps
\qquad
\qquad
\qquad
Parallel lines do not necessarily remain parallel

\qquad
\qquad
\qquad

Fitting an affine transformation

- Assuming we know the correspondences, how do we get the transformation? \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Slide credit: Kristen Grauman

RANSAC: General form

- RANSAC loop:

1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches)
2. Compute transformation from seed group
3. Find inliers to this transformation
4. If the number of inliers is sufficiently large, re-compute estimate of transformation on all of the inliers

- Keep the transformation with the largest number of inliers \qquad
\qquad
Slide credit: Kristen Grauman

RANSAC example: Translation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC example: Translation \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC pros and cons

\qquad

- Pros
- Simple and general
- Applicable to many different problems
- Often works well in practice
- Cons
- Lots of parameters to tune
- Doesn't work well for low inlier ratios (too many iterations,
\qquad
\qquad or can fail completely)
\qquad
\qquad
\qquad
\qquad

Today

- Image mosaics
- Fitting a 2D transformation \qquad
- Homography
-2D image warping
- Computing an image mosaic

HP frames commercial

- http://www.youtube.com/watch? v=2RPI5vPEoQk \qquad
\qquad
\qquad
\qquad
\qquad

Obtain a wider angle view by combining multiple images.
\qquad

How to stitch together a panorama

 (a.k.a. mosaic)?- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation between second image and first
- Transform the second image to overlap with the first \qquad
- Blend the two together to create a mosaic
- (If there are more images, repeat)
- ...but wait, why should this work at all?
- What about the 3D geometry of the scene?
- Why aren't we using it?

Pinhole camera

- Pinhole camera is a simple model to approximate imaging process, perspective projection.

If we treat pinhole as a point, only one ray from any given point can enter the camera.
\qquad

Mosaics: generating synthetic views

Can generate any synthetic camera view as long as it has the same center of projection! Source: Alyosha Efros

Obtain a wider angle view by combining multiple images.

Slide credit: Kristen Grauman \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Image reprojection

Basic question

- How to relate two images from the same camera center? - how to map a pixel from PP1 to PP2

Answer

- Cast a ray through each pixel in PP1
- Draw the pixel where that ray intersects PP2

Observation:
Rather than thinking of this as a 3D reprojection, think of it as a 2D image warp from one image to another.

Image reprojection: Homography

\qquad
A projective transform is a mapping between any two PPs with the same center of projection

- rectangle should map to arbitrary quadrilateral
- parallel lines aren't preserved
- but must preserve straight lines
called Homography

Source: Alyosha Efros

The projective plane

\qquad
Why do we need homogeneous coordinates?

- represent points at infinity, homographies, perspective projection, multi-view relationships
What is the geometric intuition?
- a point in the image is a ray in projective space
\qquad
\qquad

- Each point (x, y) on the plane is represented by a ray ($\mathrm{sx}, \mathrm{sy}, \mathrm{s}$)
- all points on the ray are equivalent: ($x, y, 1$) $\cong(s x, s y, s)$

Solving for homographies

$$
\begin{gathered}
\mathbf{p}^{\prime}=\mathbf{H p} \\
{\left[\begin{array}{c}
w x^{\prime} \\
w y^{\prime} \\
w
\end{array}\right]=\left[\begin{array}{lll}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]}
\end{gathered}
$$

Upto a scale factor.
Constraint Frobenius norm of H to be 1 .

Problem to be solved:

$$
\begin{aligned}
& \min \|A h-b\|^{2} \\
& \text { s.t. }\|h\|^{2}=1
\end{aligned}
$$

where vector of unknowns $\mathrm{h}=\left[h_{00}, h_{01}, h_{02}, h_{10}, h_{11}, h_{12}, h_{20}, h_{21}, h_{22}\right]^{\top}$

Solving for homographies
$\left[\begin{array}{c}w x_{i}^{\prime} \\ w y_{i}^{\prime} \\ w\end{array}\right]=\left[\begin{array}{lll}h_{00} & h_{01} & h_{02} \\ h_{10} & h_{11} & h_{12} \\ h_{20} & h_{21} & h_{22}\end{array}\right]\left[\begin{array}{c}x_{i} \\ y_{i} \\ 1\end{array}\right]$
$w x_{i}^{\prime}=h_{00} x_{i}+h_{01} y_{i}+h_{02}$
$w y_{i}^{\prime}=h_{10} x_{i}+h_{11} y_{i}+h_{12}$
$w=h_{20} x_{i}+h_{21} y_{i}+h_{2 z}$
$x_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{00} x_{i}+h_{01} y_{i}+h_{02}$ $y_{i}^{\prime}\left(h_{20} x_{i}+h_{21} y_{i}+h_{22}\right)=h_{10} x_{i}+h_{11} y_{i}+h_{12}$

$$
\left[\begin{array}{ccccccccc}
x_{i} & y_{i} & 0 & 0 & 0 & -x_{y}^{\prime} x_{i} & -x_{i}^{\prime} y_{i} & -x_{i}^{\prime} \\
0 & 0 & 0 & x_{i} & y_{i} & 1 & -y_{i}^{x} x_{i} & -y_{i}^{\prime} y_{i} & -y_{i}^{\prime}
\end{array}\right]\left[\begin{array}{l}
h_{00} \\
h_{0} \\
h_{02} \\
h_{10} \\
h_{11} \\
h_{12} \\
h_{20} \\
h_{21} \\
h_{22}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

\qquad

Solving for homographies

$\left[\begin{array}{ccccccccc}x_{1} & y_{1} & 1 & 0 & 0 & 0 & -x_{1}^{\prime} x_{1} & -x_{1}^{\prime} y_{1} & -x_{1}^{\prime} \\ 0 & 0 & 0 & x_{1} & y_{1} & 1 & -y_{1}^{\prime} x_{1} & -y_{1}^{\prime} y_{1} & -y_{1}^{\prime} \\ x_{n} & y_{n} & 1 & 0 & 0 & 0 & -x_{n}^{\prime} x_{n} & -x_{n}^{\prime} y_{n} & -x_{n}^{\prime} \\ 0 & 0 & 0 & x_{n} & y_{n} & 1 & -y_{n}^{\prime} x_{n} & -y_{n}^{\prime} y_{n} & -y_{n}^{\prime}\end{array}\right]\left[\begin{array}{l}h_{00} \\ h_{01} \\ h_{02} \\ h_{10} \\ h_{11} \\ h_{12} \\ h_{20} \\ h_{21} \\ h_{22}\end{array}\right]=\left[\begin{array}{c}\mathrm{A} \\ 2 n \times 9\end{array}\right.$

Defines a least squares problem:
minimize $\|\mathrm{Ah}-0\|^{2}$

- Since h is only defined up to scale, solve for unit vector $\hat{h} \quad\left(\right.$ (i.e., $\left\|\left\|\|^{2}=1\right)\right.$
- Solution: $\hat{h}=$ eigenvector of $\mathrm{A}^{\top} \mathrm{A}$ with smallest eigenvalue
- Works with 4 or more points

Today
RANSAC for robust fitting

- Lines, translation
- Image mosaics
- Fitting a 2D transformation
- Homography
-2D image warping
- Computing an image mosaic
\qquad

Image warping

Given a coordinate transform and a source image $f(x, y)$, how do we compute a transformed image $g\left(x^{\prime}, y^{\prime}\right)=f(T(x, y))$?

Forward warping

Send each pixel $f(x, y)$ to its corresponding location

$$
\left(x^{\prime}, y^{\prime}\right)=T(x, y) \text { in the second image }
$$

Q: what if pixel lands "between" two pixels?
\qquad

Forward warping

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image
Q: what if pixel comes from "between" two pixels?

Inverse warping

Get each pixel $g\left(x^{\prime}, y^{\prime}\right)$ from its corresponding location $(x, y)=T^{-1}\left(x^{\prime}, y^{\prime}\right)$ in the first image

Q: what if pixel comes from "between" two pixels?
A: Interpolate color value from neighbors

- nearest neighbor, bilinear..
>> help interp2
Slide from Alyosha Efros

Bilinear interpolation

\qquad
Sampling at $f(x, y)$.

$f(x, y)=(1-a)(1-b) \quad f[i, j]$ $+a(1-b) \quad f[i+1, j]$
$+a b \quad f[i+1, j+1]$ $+(1-a) b \quad f[i, j+1]$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Recap: How to stitch together a panorama (a.k.a. mosaic)?

- Basic Procedure
- Take a sequence of images from the same position - Rotate the camera about its optical center
- Compute transformation (homography) between second image and first using corresponding points.
- Transform the second image to overlap with the first.
- Blend the two together to create a mosaic.
- (If there are more images, repeat)

Image warping with homographies

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

http://users.skynet.be/J.Beever/pave.htm

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

RANSAC for estimating

 homography- RANSAC loop:
- 1. Select four feature pairs (at random)
- 2. Compute homography H (exact)
- 3. Compute inliers where $\operatorname{SSD}\left(p_{i}^{\prime}, \boldsymbol{H} p_{i}\right)<\varepsilon$
- 4. Keep largest set of inliers
- 5. Re-compute least-squares H estimate on all of the inliers

\qquad

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Robust feature-based alianment

- Extract features
- Compute putative matches
- Loop:
- Hypothesize transformation T (small group of putative matches that are related by T)
- Verify transformation (search for other matches consistent with T) Soure: L. Lazeonk

Summary: alignment \& warping

- Write 2d transformations as matrix-vector multiplication (including translation when we use homogeneous coordinates)
- Fitting transformations: solve for unknown parameters given corresponding points from two views (affine, projective (homography)).
- Perform image warping (inverse)
- Mosaics: uses homography and image warping to merge views taken from same center of projection.

Slide credit: Kristen Grauman \qquad , .
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

