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Last time

* RANSAC for robust fitting
— Lines, translation
* Image mosaics

— Fitting a 2D transformation
« Homography

Today

Mosaics recap:
How to warp one image to the other, given H?

How to detect which features to match? 3

5/5/20



How to stitch together a panorama
(a.k.a. mosaic)?

» Basic Procedure
— Take a sequence of images from the same position
* Rotate the camera about its optical center
— Compute transformation between second image and first
— Transform the second image to overlap with the first
— Blend the two together to create a mosaic
— (If there are more images, repeat)

4
Source: Steve Seitz

Mosaics

Zyes °s wiosy abew

Obtain a wider angle view by combining multiple images.
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To compute the homography given pairs of corresponding
points in the images, we need to set up an equation where
the parameters of H are the unknowns...
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Solving for homographies

p’=Hp
wx'l [ho hot  he][x
wy'|=| o hu hel|y
w hao  ha ha||1

Defined up to a scale factor.
Constrain Frobenius norm of H to be 1.

Problem to be solved:

min| 4k -]’
s.t. HhH2 =1

where vector of unknowns h = [y, ho1, R0 010,011,015, 020, 051,000

Adapted from Devi Parikh

Solving for homographies

ho  hot ho][xi
wyi'[=| o hu he || i
w ho ha ha2|| 1

wx} = hoo; + hory; + hoy !
wy, = hiow; + h11yi + hia
w = hyox; + ho1y; + hag Y=

There are 9 variables hyy,...,h,,.
Are there 9 degrees of freedom? i

No. We can multiply all h; by nonzero /
scalar k without changing the equations:

oo + horyi + hoa
haox; + ho1yi + haa

hiozi + hiryi + haa
hooxi + ho1yi + ha

khoox; + khory; + khoa
khaox; + khory; + khag

khyox; + khiyy; + khia

" khoox; + khoyy; + khos

Enforcing 8 DOF

Impose unit vector constraint

s hooti + howyi + hoz J = hiowi + huyi 4+ haa
Y hooti +horyi +hoy 7Y haoi 4 ha1yi 4 hao

Subjectto:  h2 + h2 + h3, + 3+ k3 + Yy + R+ hE + k3, =1
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Projective: # correspondences?

How many correspondences needed for projective?

Source: Alyosha Efros

RANSAC for estimating homography

RANSAC loop:

1.
. Compute homography H (exact)

. Compute inliers where SSD(p,’, Hp)< ¢

. Keep largest set of inliers

. Re-compute least-squares H estimate on all of the inliers

a b~ ON

Select four feature pairs (at random)

11

Slide credit: Steve Seitz

Robust feature-based alignment

12
Source: L. Lazebnik
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Robust feature-based alignment

» Extract features

13
Source: L. Lazebnik

Robust feature-based alignment

» Extract features
» Compute putative matches

14
Source: L. Lazebnik

Robust feature-based alignment

» Extract features

* Compute putative matches
* Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)

15
Source: L. Lazebnik
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Robust feature-based alignment

» Extract features
+ Compute putative matches
* Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)
»  Verify transformation (search for other matches consistent
with T)

16
Source: L. Lazebnik

Robust feature-based alignment

» Extract features
» Compute putative matches
* Loop:
* Hypothesize transformation T (small group of putative
matches that are related by T)
« Verify transformation (search for other matches consistent

with T) "

Source: L. Lazebnik

Creating and Exploring a Large
Photorealistic Virtual Space

Josef Sivic, Biliana Kaneva, Antonio Torralba, Shai Avidan and William T.
Freeman, Internet Vision Workshop, CVPR 2008.
http://www.youtube.com/watch?v=EQ0rboU10rPo
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Creating and Exploring a Large
Photorealistic Virtual Space

Input image
sy 45: m@ > )
| Current view, and
desired view in green

Synthesized view from
new camera

Induced camera
motion

Mosaics recap:
How to warp one image to the other, given H?

F

How to detect which features to match? e

Detecting local invariant
features

 Detection of interest points
— Harris corner detection
— (Scale invariant blob detection: LoG)
» (Next time: description of local patches)

21
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Local features: main components

F

1) Detection: Identify the
interest points

2) Description: Extract vector
feature descriptor =
surrounding each interest
point.

3) Matching: Determine
correspondence between
descriptors in two views

risten Grauman

Local features: desired properties

Repeatability

— The same feature can be found in several images
despite geometric and photometric transformations

Saliency

— Each feature has a distinctive description
Compactness and efficiency

— Many fewer features than image pixels

* Locality

— A feature occupies a relatively small area of the
image; robust to clutter and occlusion

23

Applications

* Local features have be used for:
— Image alignment
— 3D reconstruction
— Motion tracking
— Robot navigation
— Indexing and database retrieval
— Object recognition

24

ana |l azebnik
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A hard feature matching problem

NASA Mars Rover images
25

Answer below (look for tiny colored squares...)

NASA Mars Rover images
with SIFT feature matches

Figure by Noah Snavely 2

Goal: interest operator repeatability

» We want to detect (at least some of) the
same points in both images.

R RN
No chance to find true matches!

* Yet we have to be able to run the detection

procedure independently per image.
27
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Goal: descriptor distinctiveness

» We want to be able to reliably determine
which point goes with which.

* Must provide some invariance to geometric
and photometric differences between the two

views.
28

Local features: main components

1) Detection: Identify the
interest points

2) Description:Extract vector
feature descriptor
surrounding each interest
point.

3) Matching: Determine
correspondence between

descriptors in two views
29

* What points would you choose (for
repeatability, distinctiveness)? %
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Corners as distinctive interest points

We should easily recognize the point by
looking through a small window

Shifting a window in any direction should give
a large change in intensity

“flat” region: “edge”: “corner”:

no change in no change along significant

all directions the edge change in all
direction directions

Slide credit: Alyosha Efros, Darya Frolova, Denis Simakov

Corners as distinctive interest points

1111
M _ xTx xTy
E L1, LI

2 x 2 matrix of image derivatives (averaged in
neighborhood of a point).

What does this matrix reveal?

First, consider an axis-aligned corner:

5/5/20
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What does this matrix reveal?

First, consider an axis-aligned corner:

> I1 0
M=E x x2y =|:A'| ]
ley Iy 0 A2

This means dominant gradient directions align with
X Oor y axis

Look for locations where both A’s are large.

If either A is close to 0, then this is not corner-like.

What if we have a corner that is not aligned with the
image axes? *

What does this matrix reveal?

0
Since M is symmetric, we have M =X )(')1 AZ]XT
(Eigenvalue decomposition)
Mxi = /lixi

The eigenvalues of M reveal the amount of
intensity change in the two principal orthogonal
gradient directions in the window.

Corner response function

“edge”: “corner”: “flat” region
A >> 0, A\, and A, are large, A, and A, are
Ay >> A A~ Ay small;
F= A1A2
A1+ A2
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Harris corner detector

1) Compute M matrix for each image window to
get their cornerness scores.

2) Find points whose surrounding window gave
large corner response (f > threshold)

3) Take the points of local maxima, i.e., perform
non-maximum suppression

Example of Harris application

risten Grauman

Example of Harris application

Compute corner response at every pixel.

risten Grauman
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Example of Harris application

risten Grauman

Properties of the Harris corner detector

Rotation invariant? Yes

N

41

Properties of the Harris corner detector

Rotation invariant? Yes
Translation invariant? Yes

L 1N

42
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Properties of the Harris corner detector
Rotation invariant? Yes

Translation invariant? Yes

Scale invariant? No

) =

All points will be

Corner !
classified as edges

Summary
Image warping to create mosaic, given homography

Interest point detection
— Harris corner detector
— Next time:
« Laplacian of Gaussian, automatic scale selection
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