
Today

- · Local invariant features
 - Detection of interest points
 - (Harris corner detection)
 - Scale invariant blob detection: LoG
 - Description of local patches
 - SIFT: Histograms of oriented gradients

2

Local features: main components

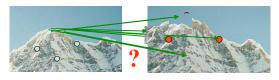
- 1) Detection: Identify the interest points
- 2) Description: Extract vector feature descriptor surrounding each interest point. $\mathbf{x}_1 = [\mathbf{x}_1^{(1)}, \dots, \mathbf{x}_d^{(l)}]$
- Matching: Determine correspondence between descriptors in two views

A₂ = (A₁ ,..., A_d)

isten Grauman

Goal: interest operator repeatability

• We want to detect (at least some of) the same points in both images.


No chance to find true matches!

• Yet we have to be able to run the detection procedure *independently* per image.

Kristen Graumar

Goal: descriptor distinctiveness

• We want to be able to reliably determine which point goes with which.

 Must provide some invariance to geometric and photometric differences between the two views.

Kristen Graumar

Local features: main components

Detection: Identify the interest points

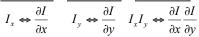
- 2) Description:Extract vector feature descriptor surrounding each interest point.
- Matching: Determine correspondence between descriptors in two views

Kristen Graumar

Recall: Corners as distinctive interest points

$$M = \sum \begin{bmatrix} I_x I_x & I_x I_y \\ I_x I_y & I_y I_y \end{bmatrix}$$

2 x 2 matrix of image derivatives (averaged in neighborhood of a point).



$$I_x \Leftrightarrow \frac{\partial I}{\partial x}$$

Recall: Corners as distinctive interest points

Since M is symmetric, we have $M = X \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} X^T$ (Eigenvalue decomposition)

$$Mx_i = \lambda_i x_i$$

The eigenvalues of M reveal the amount of intensity change in the two principal orthogonal gradient directions in the window.

Recall: Corners as distinctive interest points

"corner": λ_1 and λ_2 are large, $\dot{\lambda_1} \sim \lambda_2;$

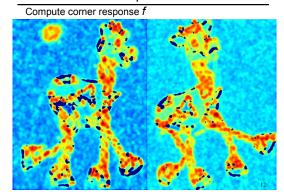
"flat" region λ_1 and λ_2 are small;

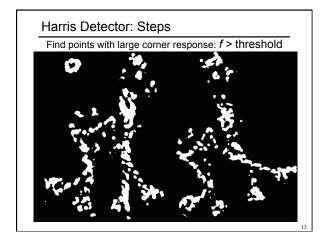
One way to score the cornerness:

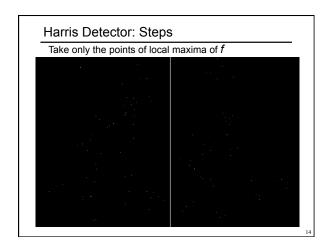
$$f = \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2}$$

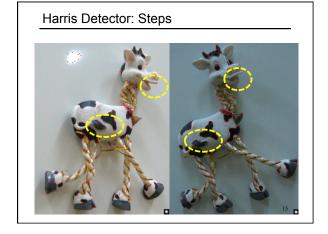
Harris corner detector

- 1) Compute *M* matrix for image window surrounding each pixel to get its *cornerness* score.
- 2) Find points with large corner response (*f* > threshold)
- 3) Take the points of local maxima, i.e., perform non-maximum suppression


...


10


Harris Detector: Steps



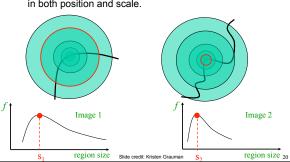
Harris Detector: Steps

	1
Properties of the Harris corner detector	
Rotation invariant? Yes	
16	
Properties of the Harris corner detector	
Rotation invariant? Yes	
Translation invariant? Yes	
17	
	-
Properties of the Harris corner detector	
Rotation invariant? Yes	
Translation invariant? Yes	
Scale invariant? No	
<u> </u>	
All points will be Corner!	
classified as edges	

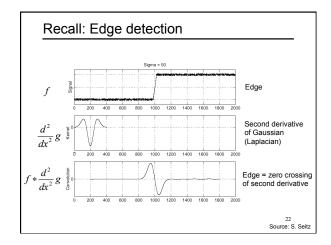
Scale invariant interest points

How can we independently select interest points in each image, such that the detections are repeatable across different scales?

19

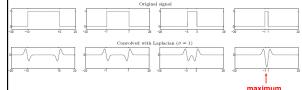

21

Kristen Grauman


Automatic scale selection

Intuition

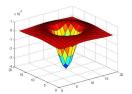
 Find scale that gives local maxima of some function f in both position and scale.



What can be the "signature" function?

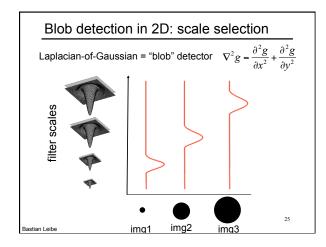
From	edges	to	blobs
	cages	w	

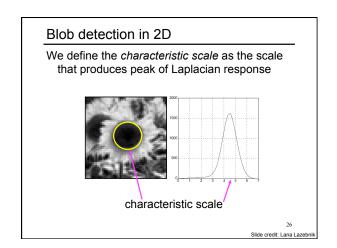
- Edge = ripple
- Blob = superposition of two ripples

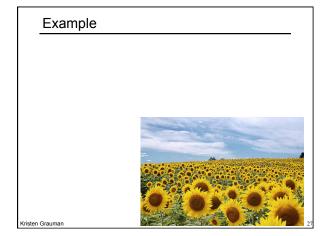


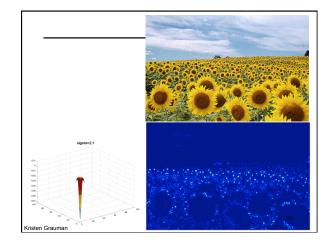
Spatial selection: the **magnitude** of the Laplacian response will achieve a maximum at the center of the blob, provided the scale of the Laplacian is "matched" to the scale of the blob

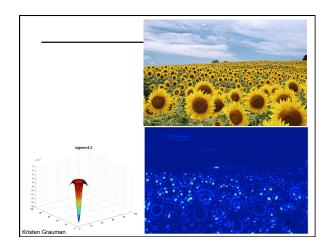
Slide credit: Lana Lazebnik

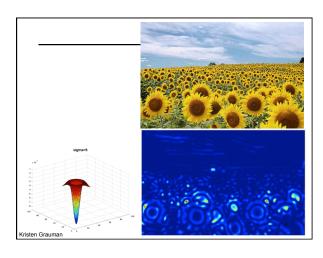

Blob detection in 2D

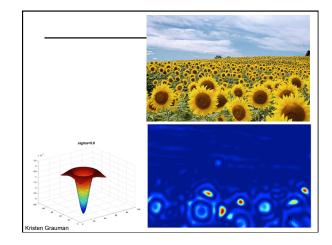

Laplacian of Gaussian: Circularly symmetric operator for blob detection in 2D

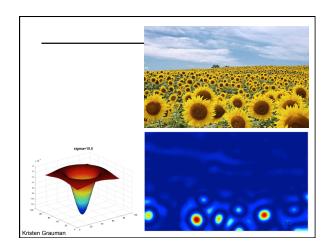


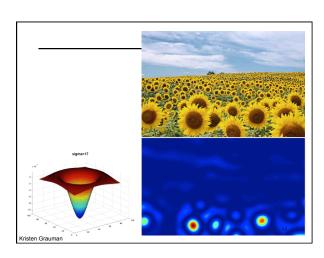


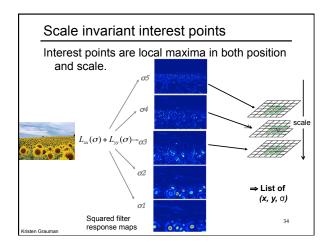

$$\nabla^2 g = \frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2}$$

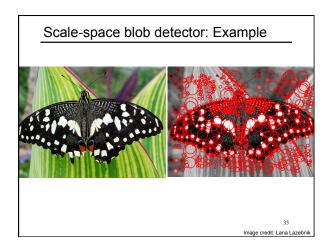


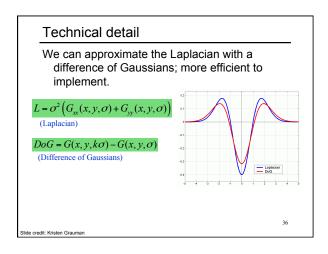


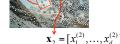












Local features: main components

- Detection: Identify the interest points
- 2) Description: Extract vector feature descriptor surrounding each interest point. $\mathbf{x}_1 = [x_1^{(1)}, \dots, x_d^{(1)}]$

37

3) Matching: Determine correspondence between descriptors in two views

Slide credit: Kristen Grauman

Geometric transformations

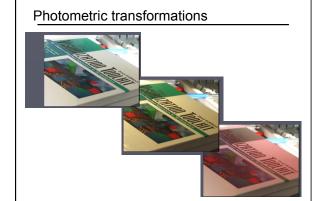
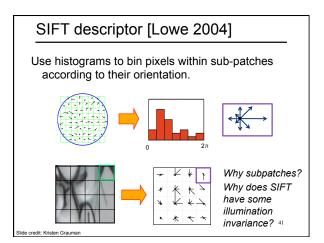



Figure from T. Tuytelaars ECCV 2006 tutorial

Raw patches as local descriptors The simplest way to describe the neighborhood around an interest point is to write down the list of intensities to form a feature vector. But this is very sensitive to even small shifts, rotations.

Making descriptor rotation invariant

- Rotate patch according to its dominant gradient orientation
- This puts the patches into a canonical orientation.

Image from Matthew Brown

SIFT descriptor [Lowe 2004]

- Robust matching technique

 - Can handle changes in viewpoint
 Up to about 60 degree out of plane rotation
 Can handle significant changes in illumination
 Sometimes even day vs. night (below)
 - Fast and efficient—can run in real time
 - Lots of code available
 http://people.csail.mit.edu/albe

Example

NASA Mars Rover images

44

Example

NASA Mars Rover images with SIFT feature matches Figure by Noah Snavely

SIFT descriptor properties

Invariant to

- Scale
- Rotation

Partially invariant to

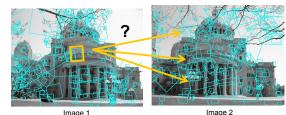
- · Illumination changes
- Camera viewpoint
- · Occlusion, clutter

46

Local features: main components

- Detection: Identify the interest points
- 2) Description:Extract vector feature descriptor surrounding each interest point.
- 3) Matching: Determine correspondence between descriptors in two views

Slide credit: Kristen Grauma


Matching local features

Kristen Grauman

Matching local features

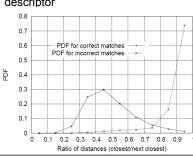
To generate **candidate matches**, find patches that have the most similar appearance (e.g., lowest SSD) Simplest approach: compare them all, take the closest (or closest k, or within a thresholded distance)

Kristen Grauman

Ambiguous matches

Image 1

Image 2


To add robustness to matching, can consider **ratio**: distance to best match / distance to second best match If low, first match looks good.

If high, could be ambiguous match.

Cristen Graum

Matching SIFT Descriptors

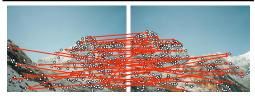
Nearest neighbor (Euclidean distance)
Threshold ratio of nearest to 2nd nearest descriptor

Lowe IJCV 2004

Recap: robust feature-based alignment

52 Source: L. Lazebnik

Recap: robust feature-based alignment



· Extract features

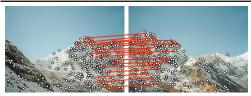
53 Source: L. Lazebi

Recap: robust feature-based alignment

- · Extract features
- Compute *putative matches*

54 Source: L. Lazebnii

Recap: robust feature-based alignment



- Extract features
- · Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)

55 ource: L. Lazebr

Recap: robust feature-based alignment

- · Extract features
- Compute putative matches
- Loop
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Recap: robust feature-based alignment

- Extract features
- Compute putative matches
- Loop:
 - Hypothesize transformation T (small group of putative matches that are related by T)
 - Verify transformation (search for other matches consistent with T)

Source: L. Lazebnii

Applications of local invariant features

Wide baseline stereo Motion tracking Panoramas 3D reconstruction Recognition (better for instance matching)

58

Automatic mosaicing

AutoStitch

59

Wide baseline stereo

[Image from T. Tuytelaars ECCV 2006 tutorial]

Recognition of specific objects, scenes	
Schmid and Mohr 1997 Sivic and Zisserman, 2003	
Rothganger et al. 2003 Lowe 2002 61	
Kristen Grauman	
	_
Summary	
Interest point detection	
Harris corner detector	
Laplacian of Gaussian, automatic scale selection	
Invariant descriptors Rotation according to dominant gradient direction 	
Histograms for robustness to small shifts and translations (SIFT descriptor)	
62	
Questions?	
Questione.	