ECS 174: Computer Vision March 31st, 2020

Yong Jae Lee Assistant Professor CS, UC Davis

Plan for today

- Topic overview
- Introductions
- Course overview
 - Logistics and requirements

What is Computer Vision?

Computer Vision

Enable machines to "see" the visual world as we do

Computer Vision

- Automatic understanding of images and video
 - 1. Computing properties of the 3D world from visual data *(measurement)*

1. Vision for measurement

Real-time stereo

Wang et al.

Structure from motion

Snavely et al.

Tracking

Demirdjian et al.

Computer Vision

- Automatic understanding of images and video
 - 1. Computing properties of the 3D world from visual data *(measurement)*
 - 2. Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities *(perception and interpretation)*

2. Vision for perception, interpretation

Slide credit: Kristen Grauman

Related disciplines

Vision and graphics

Inverse problems: analysis and synthesis

Slide credit: Kristen Grauman

Why is vision difficult?

What humans see

What computers see

Why is vision difficult?

• Ill-posed problem: real world much more complex than what we can measure in images

 $-3D \rightarrow 2D$

 Impossible to literally "invert" image formation process

Challenges: ambiguity

 Many different 3D scenes could have given rise to a particular 2D picture

Challenges: variations

Illumination

Occlusions

Object pose

Intra-class appearance

Viewpoint

Challenges: scale

slide credit: Fei-Fei, Fergus, Torralba

Challenges: Motion

slide credit: Svetlana Lazebnik

Challenges: occlusion, clutter

slide credit: Svetlana Lazebnik

Challenges: object intra-class variation

slide credit: Fei-Fei, Fergus, Torralba

Challenges: context and human experience

Slide credit: Fei-Fei, Fergus, Torralba

Challenges: context and human experience

Challenges: context and human experience

Challenges: complexity

How many object categories are there?

Biederman 1987

Slide credit: Fei-Fei, Fergus, Torralba

Challenges: complexity

250 billion images

1 billion images served daily

Ophotobucket 10 billion images

300 hours uploaded per minute

From **CISCO**:

Almost 90% of web traffic is visual!

Challenges: complexity

- Thousands to millions of pixels in an image
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991]

What works well today?

Optical character recognition (OCR)

License plate readers

http://en.wikipedia.org/wiki/Automatic number plate recognition

Digit recognition yann.lecun.com

Check Entry			
DataTrade Demo Nos Negostable Nos Negostable Negosta	14 Octore 19/10 22344999+ 0300	100 0410 18-20 1653.10 000 000 000	726.
Batch No: 1001 Sequence No: 2 Postry No: 1119074 MERCHAN	Oveck Account No: 45 72344 T R E M I T	Oeck.No 4999) 100	Oreck Amount 653.10 Enter Reject

Automatic check processing

Sudoku grabber http://sudokugrab.blogspot.com/

Source: S. Seitz, N. Snavely

Image classification and object detection

Image classification

Object detection

Biometrics

Face recognition systems

Fingerprint scanners

Face detection

Face detection for privacy protection

slide credit: Svetlana Lazebnik

Technology gone wild...

slide credit: Svetlana Lazebnik

Face recognition

Face anonymization

Identity: Jessica Action: Applying Make-up on Lips

Identity: ??? Action: Applying Make-up on Lips

Zhongzheng Ren, Yong Jae Lee, and Michael Ryoo. Learning to Anonymize Faces for Privacy Preserving Action Detection. ECCV 2018.

Interactive systems

Shotton et al.

Instance recognition

Google Goggles

Use pictures to search the web.

Pedestrian detection

Autonomous agents

Mars rover

Self-driving car

3D reconstruction from photo collections

Q. Shan, R. Adams, B. Curless, Y. Furukawa, and S. Seitz, <u>The Visual Turing Test for Scene Reconstruction</u>, 3DV 2013

slide credit: Svetlana Lazebnik

Special effects: motion capture

Pirates of the Carribean, Industrial Light and Magic

Medical imaging

Image guided surgery Grimson et al., MIT

3D imaging MRI, CT

Visual data in 1963

-23-4445(a-d)

(a) Original picture.

(b) Differentiated picture.

(c) Line drawing.

Slide credit: Kristen Grauman

(d) Rotated view.

L. G. Roberts, <u>Machine Perception of Three</u> <u>Dimensional Solids</u>, Ph.D. thesis, MIT Department of Electrical Engineering, 1963.

Visual data today

Understand and organize and index all this data!

Surveillance and security

Medical and scientific images

Svetlana Lazebnik

Why vision?

- As image sources multiply, so do applications
 - Relieve humans of boring, easy tasks
 - Enhance human abilities
 - Advance human-computer interaction, visualization
 - Perception for robotics / autonomous agents
 - Organize and give access to visual content

Applications

- Law enforcement / Surveillance
- Robotics
- Autonomous driving
- Medical imaging
- Photo organization
- Image search
- E-commerce
- ... cell phone cameras, social media, Google Glass, etc.

Slide adapted from Devi Parikh

Summary

- Computer Vision is useful, interesting, and difficult
- A growing and exciting field
- Lots of cool and important applications
- New teams in existing companies, startups, etc.

Plan for today

- Topic overview
- Introductions
- Course overview
 - Logistics and requirements

Introductions

- Instructors
 - Yong Jae Lee (first half of the quarter)
 - yongjaelee@ucdavis.edu
 - Assistant Professor in CS, UC Davis since July 2014
 - Krishna Kumar Singh (second half of the quarter)
 - krsingh@ucdavis.edu
 - PhD student in CS, will be research scientist at Adobe Research starting July 2020
 - Research areas: computer vision and machine learning

Introductions

- TAs:
 - Utkarsh Ojha
 - ojha@ucdavis.edu
 - PhD student in CS
 - Haotian Liu
 - <u>lhtliu@ucdavis.edu</u>
 - PhD student in CS
 - Yuheng Li
 - <u>yhnli@ucdavis.edu</u>
 - MS student in CS

This course

- ECS 174 (4-units)
- Lecture: Tues & Thurs 4:40-6:00 pm
- Discussion section: Fri 1:10-2 pm
- Office hours:
 - Yong Jae/Krishna: Mon 10 am 12 pm
 - Yuheng: Tues 10 am 12 pm
 - Haotian: Wed 10 am 12 pm
 - Utkarsh: Thurs 10 am 12 pm

This course

• Course webpage

https://sites.google.com/a/ucdavis.edu/ecs-174computer-vision---spring-2020/

- Canvas (assignment submission, grades) <u>https://canvas.ucdavis.edu/courses/439841</u>
- Piazza
- http://piazza.com/uc davis/spring2020/ecs174

Zoom

- Zoom link for lectures: <u>https://ucdaviscoe.zoom.us/j/206207886?</u> <u>pwd=NVNaNkRYNTInYXRnakhlNWt5VW1nZz09</u>
- Zoom link for discussion: <u>https://ucdaviscoe.zoom.us/j/875025777?</u> <u>pwd=NCtvQ1BOWjFnWXIMdmthaWIZQ2lkZz09</u>
- Zoom link for office hours: <u>https://ucdaviscoe.zoom.us/j/840739812?</u> <u>pwd=d1Z2dEdabjFzL2N2c0VIVWU5aG9IUT09</u>
- Password sent via email, and available on Canvas

Zoom

- All lectures will be recorded, which means your audio and video will also be recorded if you interact during lectures
- We need to record the lecture videos for later viewing since some students may have connectivity issues during the designated lecture times -- thank you for your understanding
- Recordings will be available 1-2 days after the lecture on Canvas

Goals of this course

- Introduction to primary topics in Computer Vision
- Basics and fundamentals
- Practical experience through assignments
- Views of computer vision as a research area

Prerequisites

- Upper-division undergrad course
- Basic knowledge of probability and linear algebra
- Data structures, algorithms
- Programming experience
- Experience with image processing or Matlab/ Python will help but is not necessary

Topics overview

- Features and filters
- Grouping and fitting
- Recognition and learning

Focus is on algorithms, rather than specific systems

Features and filters

Transforming and describing images; textures, edges

Slide credit: Kristen Grauman

Grouping and fitting

Parallelism

Symmetry

Continuity

Closure

Clustering, segmentation, fitting; what parts belong together? Slide credit: Kristen Grauman

Recognition and learning

Recognizing objects and categories, learning techniques

W

 \bigcirc

Slide credit: Kristen Grauman

Margin

Recognition and learning

Deep learning

Not covered: Multiple views and motion

Hartley and Zisserman

Multi-view geometry, stereo vision

Slide credit: Kristen Grauman

Not covered: Video processing

Tracking objects, video analysis, low level motion, optical flow

٠	+	٠	+	٠	+	+	+	+	+	+	+	٠	٠	+
+	+	+	+	+	+	+	٠	+	+	+	٠	+	+	+
+	+	+	+	+	+		۰.	+	+			¥	+	+
+	+	+	+	t		*	*	+	+	+*	*	+	+	+
+	+	+	+	1	*	*	+-	+	+	+-	+	1	+	+
+	٠	+	+		*	+-	+-	+	-+-	+-	-	1	+	+
+	+	+	+		*	+-	+-	+	+-	+**	-	1	+	+
+	+	+	+	+	*	+	.+-	+	+-	*	-	1	+	+
+	+	+	+	+	+	+	.+-	+	+-	*	-	+	+	+
+	+	+	+	+	+	+	+-	+	+-	•	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	٠	+	+		+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

.

Tomas Izo

Slide credit: Kristen Grauman

Plan for today

- Topic overview
- Introductions
- Course overview
 - Logistics and requirements

Textbooks

By Rick Szeliski http://szeliski.org/Book/ By Kristen Grauman, Bastian Leibe Visual Object Recognition

Requirements / Grading

- Problem sets (97%)
- No final exam (0%)
- Class and Piazza participation (3%)
 - Piazza: participation points for posting (sensible) questions and answers

Problem sets

- 5 problem sets (first and last will be short)
- Some short answer concept questions
- Matlab programming problems
 - Implementation
 - Explanation, results
- Follow instructions; points will be deducted if we can't run your code out of the box
- Ask questions on Piazza first
- Submit to Canvas
- The assignments will take significant time to do -- start early!
- TA will go over problem set during discussion sections after release (others will be used as extra office hours)

Matlab

- Built-in toolboxes for lowlevel image processing, visualization
- Compact programs
- Intuitive interactive debugging
- Widely used in engineering

Matlab

Matlab available for free from campus software site

- In case we return to campus later on:
 - CSIF labs 67, 71, 75 (pc1-pc60)
 - Academic Surge 1044 and 1116
 - Remote access info found on class website

Problem Set 0

- Matlab warmup
- Basic image manipulation
- Out Thursday, due 4/9

Preview of some problem sets

resize: castle squished

crop: castle cropped

content aware resizing: seam carving

Preview of some problem sets

Image panorama
Preview of some problem sets

Object search and recognition

Preview of some problem sets

- Training and evaluating deep neural networks
- Will require python (we'll give a tutorial)

Problem set deadlines

- Problem sets due 11:59 PM PDT
 - Follow submission instructions given in assignment
 - Submit to Canvas; no hard copy submissions
 - Deadlines are firm. We'll use Canvas timestamp. Even 1 minute late is late.
- Late submissions: 1 point deduction for every hour after the deadline up to 72 hours; after 72 hours, you will receive a 0
- If your program doesn't work, clean up the code, comment it well, explain what you have, and still submit. Draw our attention to this in your answer sheet.

Collaboration policy

- All responses and code must be written individually or in pairs (a group of 2)
- Students submitting answers or code found to be identical or substantially similar (due to inappropriate collaboration) risk failing the course
 - We will be using MOSS to check for cheating!
 - Copying online solutions also counts as cheating!
 - Please don't cheat... you are going to get caught!
- Read and follow UC Davis <u>code of conduct</u>

MOSS

Miscellaneous

- Check class website regularly for assignment files, notes, announcements, etc.
- Come to virtual lecture on time
- Please interrupt with questions at any time by virtually raising hand
- (If we return to campus) No laptops, phones, tablets, etc. in class please

Coming up

- Read the class webpage carefully
- Next class (Thurs): Matlab tutorial
- PSO out Thursday, due 4/9