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Last time 

•  Image formation 
•  Linear filters and convolution useful for 

–  Image smoothing, removing noise 
•  Box filter 
•  Gaussian filter 
•  Impact of scale / width of smoothing filter 

•  Separable filters more efficient  
•  Median filter: a non-linear filter, edge-preserving 
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Separability 
•  In some cases, filter is separable, and we can factor into 

two steps: 
–  Convolve all rows 
–  Convolve all columns 
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Separability 
•  In some cases, filter is separable, and we can factor into 

two steps: e.g., 

What is the computational 
complexity advantage for a 
separable filter of size k x k, 
in terms of number of 
operations per output pixel? 

 f * (g * h) = (f * g) * h  

g 

h 

f 
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Effect of smoothing filters 

Additive Gaussian noise Salt and pepper noise 
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Median filter 

•  No new pixel values 
introduced 

•  Removes spikes: good 
for impulse, salt & 
pepper noise 

•   Non-linear filter 
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Median filter 

Salt and 
pepper 
noise 

Median 
filtered 

Plots of a col of the image 

Matlab: output im = medfilt2(im, [h w]); 9 

Slide	credit:	Martial	Hebert	



4/9/20	

4	

Median filter 
•  Median filter is edge preserving 
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Slide	credit:	Kristen	Grauman	

Median filter f: 
 
Is f(a+b) = f(a)+f(b)? 
 
Example: 
a = [10 20 30 40 50] 
b = [55 20 30 40 50] 
 
Is f linear? 
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Slide	credit:	Devi	Parikh	

Review 

Aude	Oliva	&	Antonio	Torralba	&	Philippe	G	Schyns,	SIGGRAPH	2006	

Filtering application: Hybrid Images 
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Application: Hybrid Images 
Gaussian Filter 

Laplacian Filter 

Gaussian unit impulse Laplacian of Gaussian 13 

Slide	credit:	Kristen	Grauman	

 A. Oliva, A. Torralba, P.G. Schyns,  
“Hybrid Images,” SIGGRAPH 2006 

Aude	Oliva	&	Antonio	Torralba	&	Philippe	G	Schyns,	SIGGRAPH	2006	
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Aude	Oliva	&	Antonio	Torralba	&	Philippe	G	Schyns,	SIGGRAPH	2006	
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Summary 

•  Image formation 
•  Image “noise” 
•  Linear filters and convolution useful for 

–  Enhancing images (smoothing, removing noise) 
•  Box filter 
•  Gaussian filter 
•  Impact of scale / width of smoothing filter 

–  Detecting features (next time) 
•  Separable filters more efficient  
•  Median filter: a non-linear filter, edge-preserving 
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Recall: Image filtering 

•  Compute a function of the local neighborhood at each 
pixel in the image 
–  Function specified by a “filter” or mask saying how to 

combine values from neighbors 

 

•  Uses of filtering: 
–  Enhance an image (denoise, resize, increase contrast, etc) 
–  Extract information (texture, edges, interest points, etc) 
–  Detect patterns (template matching) 

17 
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Edge detection 

•  Goal: map image from 2d array of pixels to a set of 
curves or line segments or contours. 

•  Why? 

•  Main idea: look for strong gradients, post-process 

 

Figure from J. Shotton et al., PAMI 2007 

19 
Slide	credit:	Kristen	Grauman	

What causes an edge? 

Depth discontinuity: 
object boundary 

Change in surface 
orientation: shape 

Cast shadows 

Reflectance change: 
appearance 
information, texture 

20 

Edges/gradients and invariance 

21 
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Derivatives and edges 

image 
intensity function 

(along horizontal scanline) first derivative 

edges correspond to 
extrema of derivative 

An edge is a place of rapid change in the 
image intensity function. 
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Derivatives with convolution 
For 2D function, f(x,y), the partial derivative is: 
 
 
 
 

For discrete data, we can approximate using finite 
differences: 

To implement above as convolution, what would be the 
associated filter? 
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Partial derivatives of an image 

Which shows changes with respect to x? 
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(showing filters for correlation) 
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Assorted finite difference filters 

>> My = fspecial(‘sobel’); 
>> outim = imfilter(double(im), My);  
>> imagesc(outim); 
>> colormap gray; 

25 

Slide	credit:	Kristen	Grauman	

Image gradient 
The gradient of an image:  
 
 
The gradient points in the direction of most rapid change in intensity 

The gradient direction (orientation of edge normal) is given by: 
 
 
The edge strength is given by the gradient magnitude 

26 Slide	credit:	Steve	Seitz	

Effects of noise 
Consider a single row or column of the image 

•  Plotting intensity as a function of position gives a signal 

Where is the edge? 27 

Slide	credit:	Steve	Seitz	
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Effects of noise 
•  Difference filters respond strongly to noise 

•  Image noise results in pixels that look very different from 
their neighbors 

•  Generally, the larger the noise the stronger the response 

•  What can we do about it? 

Source: D. Forsyth 
28 

Where is the edge?   

Solution:  smooth first 

Look for peaks in  29 

Slide	credit:	Kristen	Grauman	

Derivative theorem of convolution 

Differentiation property of convolution. 

30 
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Derivative of Gaussian filters 
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Derivative of Gaussian filters 

x-direction y-direction 
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Slide	credit:	Svetlana	Lazebnik	

Laplacian of Gaussian 

Consider   

Laplacian of Gaussian 
operator 

Where is the edge?   Zero-crossings of bottom graph 33 

Slide	credit:	Steve	Seitz	
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2D edge detection filters 

•        is the Laplacian operator: 

Laplacian of Gaussian 

Gaussian derivative of Gaussian 

34 

Slide	credit:	Steve	Seitz	

Smoothing with a Gaussian 
Recall: parameter σ is the “scale” / “width” / “spread” of the 
Gaussian kernel, and controls the amount of smoothing. 

… 
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Effect of σ on derivatives  

The apparent structures differ depending on 
Gaussian’s scale parameter. 
 
Larger values: larger scale edges detected 
Smaller values: finer features detected 36 

σ = 1 pixel σ = 3 pixels 
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So, what scale to choose? 
It depends what we’re looking for. 

37 

Slide	credit:	Kristen	Grauman	

Mask properties 
•  Smoothing 

–  Values positive  
–  Sum to 1 à constant regions same as input 
–  Amount of smoothing proportional to mask size 
–  Remove “high-frequency” components; “low-pass” filter 

 

•  Derivatives 
–  ___________ signs used to get high response in regions of high 

contrast 
–  Sum to ___ à no response in constant regions 
–  High absolute value at points of high contrast 
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Seam carving: main idea 

[Shai & Avidan, SIGGRAPH 2007] 
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Content-aware resizing 

Traditional resizing 

Seam carving: main idea 

[Shai & Avidan, SIGGRAPH 2007] 
40 

Slide	credit:	Kristen	Grauman	

Seam carving: main idea 

41 

video 

Content-aware resizing 

Seam carving: main idea 

Intuition:  
•  Preserve the most “interesting” content 

à Prefer to remove pixels with low gradient energy 
•  To reduce or increase size in one dimension, 

remove irregularly shaped “seams” 
à Optimal solution via dynamic programming. 

42 

Slide	credit:	Kristen	Grauman	
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•  Want to remove seams where they won’t be very 
noticeable: 
–  Measure “energy” as gradient magnitude 

•  Choose seam based on minimum total energy 
path across image, subject to 8-connectedness. 

Seam carving: main idea 

=)( fEnergy
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Slide	credit:	Kristen	Grauman	
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Let a vertical seam s consist of h positions that 
form an 8-connected path. 

Let the cost of a seam be: 

Optimal seam minimizes this cost: 

Compute it efficiently with dynamic programming. 

Seam carving: algorithm 
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Slide	credit:	Kristen	Grauman	

How to identify the minimum cost seam? 
•  How many possible seams are there?  

–  height h, width w 

•  First, consider a greedy approach: 

625
982
031

Energy matrix (gradient magnitude) 45 

Slide	credit:	Adapted	from	Kristen	Grauman	
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row i-1 

Seam carving: algorithm 
•  Compute the cumulative minimum energy for all possible 

connected seams at each entry (i,j): 

 
•  Then, min value in last row of M indicates end of the 

minimal connected vertical seam.   
•  Backtrack up from there, selecting min of 3 above in M. 

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM

j-1 

j row i 

M matrix:  
cumulative min energy 

(for vertical seams) 

Energy matrix 
(gradient magnitude) 

j j+1 
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Example 

625
982
031

Energy matrix 
(gradient magnitude) 

M matrix 
(for vertical seams) 

1458
983
031

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM
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Example 

625
982
031

Energy matrix 
(gradient magnitude) 

M matrix 
(for vertical seams) 

1458
983
031

( ))1,1(),,1(),1,1(min),(),( +−−−−+= jijijijiEnergyji MMMM
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Real image example 

Original	Image	 Energy	Map	

Blue = low energy 
Red = high energy 
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Slide	credit:	Kristen	Grauman	

Real image example 
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Slide	credit:	Kristen	Grauman	

Other notes on seam carving 

•  Analogous procedure for horizontal seams  
•  Can also insert seams to increase size of image 

in either dimension 
–  Duplicate optimal seam, averaged with neighbors 

•  Other energy functions may be plugged in 
–  E.g., color-based, interactive,… 

•  Can use combination of vertical and horizontal 
seams 

51 
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Example	seam	carving	results	

53	

54	
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Seam carving result 

Original image 

Conventional resize 

55	

Seam carving result 

Conventional resize 

Original image 
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Original	image	(599	by	799)	

Conventional	resize	(399	by	599)	

Seam	carving	(399	by	599)	

57	
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Removal	of	a	marked	object	

58	
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Removal	of	a	marked	object	

Removal	of	a	marked	object	

60	



4/9/20	

21	

“Failure cases” with seam carving  

61	

“Failure cases” with seam carving  
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Questions?	

See	you	Tuesday!	
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